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Abstract. The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet
star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close
binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the
latter had previously been shown to provide collapsars below a certain metallicity threshold for
single stars. The binary channel presented here may providea means for massive stars to obtain
the high rotation rates required to evolve quasi-chemically homogeneous and fulfill the collapsar
scenario. Moreover, it suggests that a possibly large fraction of long gamma-ray bursts occurs in
runaway stars.
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INTRODUCTION

Long gamma-ray bursts are thought to be produced by a subset of dying massive and
possibly metal-poor stars [1, 2, 3]. Within the currently favored collapsar scenario [4],
the burst is produced by a rapidly rotating massive Wolf-Rayet (WR) star whose core
collapses into a black hole [5]. While single star evolutionmodels without internal
magnetic fields can produce such configurations [6, 7], only models including magnetic
fields are capable of reproducing the slow spins of young Galactic neutron stars [8, 9]
and white dwarfs [10], due to the magnetic core-envelope coupling during the giant
stage.

Yoon and Langer [11], Yoon et al. [12] and Woosley and Heger [13] recently showed
that below a certain metallicity threshold, very rapidly rotating single stars avoid the
magnetic braking of the core through the so-called quasi-chemically homogeneous evo-
lution: rotationally induced mixing processes keep the star close to chemical homogene-
ity, and thus the giant stage is avoided altogether. While these models are successful in
producing models which fulfill all constraints of the collapsar model, they require very
rapid initial rotation.

The question thus arises whether the quasi-chemically homogeneous evolution of
massive stars can also be obtained in mass transferring massive binary systems [14],
since in such systems the mass gainer can be spun-up to close to critical rotation [see
15, 6], independent of its initial rotation rate.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191980261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0709.0829v1


FIGURE 1. Left panel: evolutionary track of the mass gainer in our 16M⊙+15M⊙ early Case B binary
model (5 d initial orbital period) in the HR diagram (solid line), from the zero age main sequence up to
core carbon exhaustion. The main evolutionary phases are labeled by numbers (see legend). The dashed
line shows the evolutionary track of a very rapidly rotating(3 init/3K = 0.9) 24M⊙ single star. Both stars
have SMC metallicity, and undergo quasi-chemically homogeneous evolution (see text).Right panel:
evolution of the internal structure of the mass gainer of thecomputed 16M⊙+15M⊙ early Case B binary
sequence, as function of time, from the zero-age main sequence to core carbon exhaustion. The time axis
is logarithmic, with the time of core collapse as zero point.Convective layers are hatched. Semiconvective
layers are marked by dots (red dots in the electronic version). Gray (blue) shading indicates nuclear energy
generation (color bar to the right of the figure). The topmostsolid line denotes the surface of the star.

THE MODEL

We use a 1-D hydrodynamic binary evolution code to simulate the evolution of a 16+15
M⊙ binary model with an initial orbital period of 5 days and SMC metallicity (Z=0.004).
Internal differential rotation, rotationally induced mixing and magnetic fields are in-
cluded in both components, as well as non-conservative massand angular momen-
tum transfer, and tidal spin-orbit coupling. Detailed description of the code and of the
adopted physics can be found in Cantiello et al. [16] and references therein.

We chose an early Case B system with an initial mass ratio close to one for two
reasons. Firstly, the expected mass transfer efficiency for this case was about 60%
(meaning that 60% of the transfered matter can be retained bythe mass gainer), based on
the calculations by Wellstein [17], Langer et al. [18], and Petrovic et al. [15]. Secondly,
a Case B rather than Case A system was chosen to avoid synchronizationafter the major
mass transfer phase.

RESULTS

The evolution of the binary system proceeded as follows (cf.Table 1). The initial
rotational velocity of both stars has been set to 230kms−1, but both stars synchronize
with the orbital rotation within about 1 Myr, to equatorial rotational velocities of only
about 50kms−1. Rotationally induced mixing before the onset of mass transfer is thus
negligible — in contrast to typical O stars evolving in isolation [19, 20]. The initially



TABLE 1. Major evolutionary phases of the computed 16M⊙ +15M⊙ early Case B binary sequence.
The binary calculation ends after core carbon exhaustion ofthe mass loser (the primary), and the mass
gainer (the secondary) is then evolved as a single star. We show evolutionary time, masses of both stars,
orbital period, surface rotational velocity of both stars,surface and core helium mass fraction of the mass
gainer, and orbital velocity of the mass gainer. The abbreviations for the evolutionary phases are: ZAMS
= zero age main sequence; ECHB= end core hydrogen burning; ICB= ignition of carbon burning; ECCB
= end core carbon burning. The numbered evolutionary stages correspond to those given in Fig. 1, left
panel.

Phase Time M1 M2 P 3rot,1 3rot,2 Yc,2 Ys,2 3orbit,2

Myr M⊙ M⊙ d km s−1 km s−1 km s−1

1 ZAMS 0 16 15 5.0 230 230 0.248 0.248 201
2 begin Case B 9.89 15.92 14.94 5.1 96 85 0.879 0.248 198
3 end Case B 9.90 3.93 20.77 38.2 27 719 0.434 0.348 29
4 ECCB primary 11.30 3.71 20.86 42.7 40 767 0.457 0.441 27

5 ECHB secondary 18.10 – 16.76 – – 202 0.996 0.956 –
6 ICB secondary 18.56 – 12.85 – – 191 0.000 0.996 –
7 ECCB secondary 18.56 – 12.83 – – 258 0.000 0.996 –

more massive star ends core hydrogen burning after∼ 9.89Myr, and Case B mass
transfer begins shortly thereafter. It sheds about 12M⊙ evolving into a∼ 4M⊙ helium
star. About 1.5 Myr later, it sheds another∼ 0.2M⊙ as a helium giant, before exploding
as Type Ib/c supernova.

The mass gainer keeps about 6M⊙ of the overflowing matter, rendering the mass ac-
cretion efficiency to roughly 50%. Thereafter, it enters a phase of close-to-critical rota-
tion, which induces rejuvenation and quasi-chemically homogeneous evolution (Fig. 1).
Its mass loss is enhanced by rotation. About 5 Myr after the onset of accretion, the sur-
face helium mass fraction of the mass gainer is increased to values above 60%, and
Wolf-Rayet mass loss is assumed from then on. The star finishes core hydrogen burning
after another 3 Myr, at an age of 18.1 Myr, with a mass of 16.8M⊙, a surface helium
mass fraction of 95%, and rotating with∼ 200kms−1 at the surface.

After core hydrogen exhaustion, the mass gainer contracts and spins-up to critical
rotation, which leads to a mass shedding of almost 2M⊙. During its remaining lifetime
of less than 0.5 Myr, it loses about another 2M⊙ to a Wolf-Rayet wind. It ends its life
as a rapidly rotating Wolf-Rayet star with a final mass of about 13M⊙, ready to form
a collapsar (average specific angular momentum in the CO core< jCO >≃ 2× 1016

cm2s−1). Assuming the binary brakes up due to the explosion of the mass loser, the mass
gainer would have traveled for about 7 Myr with its final orbital velocity of 27kms−1 a
distance of about 200 pc.

DISCUSSION

The binary evolution model presented above shows that quasi-chemically homogeneous
evolution may occur in mass gainers of low-metallicity massive early Case B binaries.
The comparison of the mass gainer with a corresponding single star model made it clear
that such binary components evolve in the same way as extremely rapidly rotating single



stars. This confirms that the scenario of quasi-chemically homogeneous evolution might
not be restricted to single stars, but may apply to the accreting component of massive
close binaries as well.

While we provide only one example, it seems likely that this scenario applies to
most massive close binary components which accrete or gain an appreciable amount
of mass; this may encompass Case A binaries and early Case B binaries [21, 22, 23].
Case A merger are also likely contributing to this scenario.While the merged object will
have more mass than the initially more massive star in the binary, the product will be
extremely rapidly rotating due to the orbital angular momentum, as in the case of some
blue stragglers [24].

Binaries and the distribution of rotational velocities

The best constraint so far on the distribution of initial rotational velocities (IRF) comes
from the recent study of young O stars in the SMC, mostly from the cluster NGC 346
[25]. According to Yoon et al. [12], the three most rapid rotators from the sample of
21 O stars would qualify for the quasi-chemically homogeneous evolution scenario, and
remarkably, all three stars are found to be helium-enhanced. The simplest approach to
understand those stars is to assume that they correspond to the tip of the IRF.

However, that data of Mokiem et al. [25] reveals another interesting feature: two
of the the three mentioned stars are runaway stars, with radial velocities deviating by
30...70kms−1 from the average cluster radial velocity. While dealing with low number
statistics, this information opens another possibility: that the most rapidly rotating young
O stars in the SMC are products of binary evolution. A closer examination of the IRF
derived by Mokiem et al. [25] appears to support this idea: While the three rapid rotators
show3sini ∼> 290kms−1, all other stars have3sini ∼< 210kms−1.

The following hypothesis therefore seems conceivable: TheIRF of single O stars in
the SMC ends at about 210kms−1 — too early to allow quasi-chemically homogeneous
evolution and collapsar formation. However, massive closebinary evolution enhances
the IRF to what we may call the apparent IRF as measured by Mokiem et al. [25], which
leads to the redshift dependent GRB rate as worked out by Yoonet al. [12]. According
to the binary population synthesis model of Podsiadlowski et al. [21], about 10% of all
massive binaries might lead to a Case A merger or early Case B mass transfer, which is
sufficient to populate the rapidly rotating part of the IRF of Mokiem et al. In that context,
the rapidly rotating O star in the sample of Mokiem et al. [25]which does not appear
as runaway star could either have an undetected high proper motion, or it could be the
result of a Case A merger — where no runaway is produced.

Effects from runaway GRBs

The runaway nature of a GRB progenitor, as obtained in our example, has important
observational consequences for both the positions of GRBs,and their afterglow prop-
erties. Concerning the afterglow, it is relevant that the medium close to a WR star has



the density profile of a free-streaming wind, and analyticaland numerical calculations
both suggest that the free wind of a single WR star typically extends over many parsec
[26]. However, from the analysis of GRB afterglows, a constant circumstellar medium
density has been inferred in many cases [27, 28, 29, 30]. A possible explanation has
been proposed by van Marle et al. [26], who simulated the circumstellar medium around
a moving WR star. As the GRB jet axis is likely perpendicular to the space velocity vec-
tor, the jet escapes through a region of the bow-shock where the wind termination shock
is very close to the star. Therefore, the jet may enter a constant density medium quickly
in this situation.

Concerning the GRB positions, since the spin axis of the stars in a close binary system
are likely orthogonal to the orbital plane, the observationof a GRB produced by the
proposed binary channel is possible only if the binary orbitis seen nearly face on. Then
the direction of motion of the runaway GRB progenitor must beorthogonal to the line
of sight, allowing the progenitor, for the given space velocity, to obtain the maximum
possible apparent separation from its formation region. The finding of Hammer et al.
[31], that the nearest three long gamma-ray bursts may be dueto runaway stars is in
remarkable agreement with our scenario. While the collapsar progenitor in our binary
model travels only 200 pc before it dies, compared to the 400...800 pc deduced by
Hammer et al. [31], binary evolution resulting in higher runaway velocities are certainly
possible [15]. It remains to be analyzed whether the runawayscenario is compatible with
the finding that long GRBs are more concentrated in the brightest regions of their host
galaxies than core collapse supernovae [32].
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