10,437 research outputs found

    The Timing of Nine Globular Cluster Pulsars

    Full text link
    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with past authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called "black widow" class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in globular clusters. We also have measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M_sun) and companion mass (1.2064(20) M_sun), from which we derive the orbital inclination [sin(i) = 0.9956(14)] and the pulsar mass (1.3655(21) M_sun), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.Comment: Published in ApJ; 33 pages, 5 figures, 7 table

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12

    Full text link
    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12 in connection with potential violations of the equivalence principle (Abridged).Comment: LaTex2e, 10 pages, 1 table, 3 figures, 17 references. Small stylistic changes. Version to appear in Journal of Astrophysics and Astronomy (JAA

    The Eccentric Binary Millisecond Pulsar in NGC 1851

    Full text link
    PSR J0514-4002A is a 5-ms pulsar is located in the globular cluster NGC 1851; it belongs to a highly eccentric (e = 0.888) binary system. It is one of the earliest known examples of a numerous and fast-growing class of eccentric binary MSPs recently discovered in globular clusters. Using the GBT, we have obtained a phase-coherent timing solution for the pulsar, which includes a measurement of the rate of advance of periastron: 0.01289(4) degrees per year, which if due completely to general relativity, implies a total system mass of 2.453(14) solar masses. We also derive m_p 0.96 solar masses. The companion is likely to be a massive white dwarf star.Comment: 3 pages, including 2 figures. To appear in the proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007, McGill University, Montreal, Canad

    Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?

    Full text link
    On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at ≥100\geq 100 MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, 220.9S22^{0}.9 S, 430.2W43^{0}.2 W, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background ∼20%\sim 20\% in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTop surface component of the IceCube neutrino observatory). We also report the observation of the muon signal possibly associated with the CME/sheath striking the Earth magnetosphere on May 20, 2012. We show that the observed temporal correlation of the muon excess observed by the Tupi muon telescopes with solar transient events suggests a real physical connection between them. Our observation indicates that combination of two factors, the low energy threshold of the Tupi muon telescopes and the location of the Tupi experiment in the South Atlantic Anomaly region, can be favorable in the study and detection of the solar transient events. Our experiment provides new data complementary to other techniques (space and ground based) in the study of solar physics.Comment: 9 pages, 10 figure

    Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry

    Get PDF
    To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to have a mass ratio close to unity (q ≥\geq 0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5) M⊙M_{\odot} and that of its companion is 1.174(4) M⊙M_{\odot}; q = 0.75. If this companion is also a neutron star (NS), as indicated by the orbital eccentricity of the system (e=0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin derivative of 1.8616(7) x10−1910^-19; from these we derive a characteristic age of ~ 4.1 x 10910^9 years and a magnetic field of ~ 2.9 x 10910^9 G,i.e, this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during a NS-NS merger: it is now evident that we should not assume all DNS systems are symmetric

    Quark-hadron phase transition in a neutron star under strong magnetic fields

    Full text link
    We study the effect of a strong magnetic field on the properties of neutron stars with a quark-hadron phase transition. It is shown that the magnetic field prevents the appearance of a quark phase, enhances the leptonic fraction, decreases the baryonic density extension of the mixed phase and stiffens the total equation of state, including both the stellar matter and the magnetic field contributions. Two parametrisations of a density dependent static magnetic field, increasing, respectively, fast and slowly with the density and reaching 2−4×10182-4\times 10^{18}G in the center of the star, are considered. The compact stars with strong magnetic fields have maximum mass configurations with larger masses and radius and smaller quark fractions. The parametrisation of the magnetic field with density has a strong influence on the star properties.Comment: 15 pages, 6 figures, 8 tables, accepted for publication in J. Phys.

    Mancha-de-oídio em frutos de cirigueleira: uma ocorrência inédita no Brasil.

    Get PDF
    Alguns problemas de ordem fitopatologicoa ja foram detectados em plantios de cirigueleira do Cariri ... Dentre eles , o mais serio e que merece atencao especial pelos produtores e a resinose, causada pelo fungo Lasiodiplodia theobromae ...bitstream/CNPAT-2010/5381/1/Pa-076.pd
    • …
    corecore