857 research outputs found

    World Health Organization global air quality guideline recommendations: Executive summary

    Full text link
    Air pollution is a leading cause of death globally and has resulted in the loss of millions of healthy years of life. Moreover, the health burden has fallen disproportionately upon people in many low- and middle-income countries, where air quality continues to deteriorate. To assist authorities and civil society in improving air quality, World Health Organization has published the first global update to its 2005 air quality guidelines based on a significantly improved body of evidence. To facilitate the implementation of the World Health Organization Global Air Quality Guideline recommendations, this article summarizes the purpose and rationale of the quantitative air quality guidelines and interim target levels for six key pollutants: particulate matter 2.5, particulate matter 10, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide. In addition, good practice statements are established for the management of pollutants of concern that lack sufficient evidence to substantiate numerical targets. Keywords: Global air quality; Guidelines; World Health Organization

    Distinct regulation of tonsillar immune response in virus infection

    Get PDF
    Cataloged from PDF version of article.Background: The relationships between tonsillar immune responses, and viral infection and allergy are incompletely known. Objective To study intratonsillar/nasopharyngeal virus detections and in vivo expressions of T-cell- and innate immune response-specific cytokines, transcription factors, and type I/II/III interferons in human tonsils. Methods: Palatine tonsil samples were obtained from 143 elective tonsillectomy patients. Adenovirus, bocavirus-1, coronavirus, enteroviruses, influenza virus, metapneumovirus, parainfluenza virus, rhinovirus, and respiratory syncytial virus were detected using PCR. The mRNA expression levels of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2, and Tbet were directly analyzed by quantitative RT-PCR. Results Fifty percentage of subjects reported allergy, 59% had ≥1 nasopharyngeal viruses, and 24% had ≥1 intratonsillar viruses. Tonsillar virus detection showed a strong negative association with age; especially rhinovirus or parainfluenza virus detection showed positive association with IFN-γ and Tbet expressions. IL-37 expression was positively associated with atopic dermatitis, whereas IFN-α, IL-13, IL-28, and Tbet expressions were negatively associated with allergic diseases. Network analyses demonstrated strongly polarized clusters of immune regulatory (IL-10, IL-17, TGF-β, FOXP3, GATA3, RORC2, Tbet) and antiviral (IFN-α, IFN-β, IL-28, IL-29) genes. These two clusters became more distinctive in the presence of viral infection or allergy. A negative correlation between antiviral cytokines and IL-10, IL-17, IL-37, FOXP3, and RORC2 was observed only in the presence of viruses, and interestingly, IL-13 strongly correlated with antiviral cytokines. Conclusions: Tonsillar cytokine expression is closely related to existing viral infections, age, and allergic illnesses and shows distinct clusters between antiviral and immune regulatory genes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Human rhinoviruses enter and induce proliferation of B lymphocytes

    Get PDF
    Background: Human rhinoviruses (HRVs) are one of the main causes of virus-induced asthma exacerbations. Infiltration of B lymphocytes into the subepithelial tissue of the lungs has been demonstrated during rhinovirus infection in allergic individuals. However, the mechanisms through which HRVs modulate the immune responses of monocytes and lymphocytes are not yet well described. Objective: To study the dynamics of virus uptake by monocytes and lymphocytes, and the ability of HRVs to induce the activation of in vitro-cultured human peripheral blood mononuclear cells. Methods: Flow cytometry was used for the enumeration and characterization of lymphocytes. Proliferation was estimated using 3H-thymidine or CFSE labeling and ICAM-1 blocking. We used bead-based multiplex assays and quantitative PCR for cytokine quantification. HRV accumulation and replication inside the B lymphocytes was detected by a combination of in situ hybridization (ISH), immunofluorescence, and PCR for positive-strand and negative-strand viral RNA. Cell images were acquired with imaging flow cytometry. Results: By means of imaging flow cytometry, we demonstrate a strong and quick binding of HRV types 16 and 1B to monocytes, and slower interaction of these HRVs with CD4+ T cells, CD8+ T cells, and CD19+ B cells. Importantly, we show that HRVs induce the proliferation of B cells, while the addition of anti-ICAM-1 antibody partially reduces this proliferation for HRV16. We prove with ISH that HRVs can enter B cells, form their viral replication centers, and the newly formed virions are able to infect HeLa cells. In addition, we demonstrate that similar to epithelial cells, HRVs induce the production of pro-inflammatory cytokines in PBMCs. Conclusion: Our results demonstrate for the first time that HRVs enter and form viral replication centers in B lymphocytes and induce the proliferation of B cells. Newly formed virions have the capacity to infect other cells (HeLa). These findings indicate that the regulation of human rhinovirus-induced B-cell responses could be a novel approach to develop therapeutics to treat the virus-induced exacerbation of asthma.</p

    Regulation of ACE2 isoforms by type 2 inflammation and viral infection in human airway epithelium

    Full text link
    SARS-CoV-2 enters human cells through its main receptor angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of an infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 mRNA and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that IL-13 and RV significantly regulated mRNA, but not protein of TMPRSS2 and NRP1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining lack of intrinsic differences but dependence on the inflammatory milieu in the airways

    Epithelial barrier hypothesis and the development of allergic and autoimmune diseases

    Full text link
    The “epithelial barrier hypothesis” proposes that genetic predisposition to epithelial barrier damage, exposure to various epithelial barrier–damaging agents and chronic periepithelial inflammation are responsible for the development of allergic and autoimmune diseases. Particularly, the introduction of more than 200,000 new chemicals to our daily lives since the 1960s has played a major role in the pandemic increase of these diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defence against external factors. A leaky epithelial barrier initiates the translocation of the microbiome from the surface of affected tissues to interepithelial and even deeper subepithelial areas. In tissues with a defective epithelial barrier, colonization of opportunistic pathogens, decreased microbiota biodiversity, local inflammation, and impaired regeneration and remodelling takes place. A dysregulated immune response against commensals and opportunistic pathogens starts. Migration of inflammatory cells to other tissues and their contribution to tissue injury and inflammation in the affected tissues are key events in the development and exacerbation of many chronic inflammatory diseases. Understanding the underlying factors that affect the integrity of epithelial barriers is essential to find preventive measures or effective treatments to restore its function. The aim of this review is to assess the origins of allergic and autoimmune diseases within the framework of the epithelial barrier hypothesis

    Electroanatomical voltage mapping with contact force sensing for diagnosis of arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background Three-dimensional electroanatomical mapping (EAM) can be helpful to diagnose arrhythmogenic right ventricular cardiomyopathy (ARVC). Yet, previous studies utilizing EAM have not systematically used contact-force sensing catheters (CFSC) to characterize the substrate in ARVC, which is the current gold standard to assure adequate tissue contact. Objective To investigate reference values for endocardial right ventricular (RV) EAM as well as substrate characterization in patients with ARVC by using CFSC. Methods Endocardial RV EAM during sinus rhythm was performed with CFSC in 12 patients with definite ARVC and 5 matched controls without structural heart disease. A subanalysis for the RV outflow tract (RVOT), septum, free-wall, subtricuspid region, and apex was performed. Endocardial bipolar and unipolar voltage amplitudes (BVA, UVA), signal characteristics and duration as well as the impact of catheter orientation on endocardial signals were also investigated. Results ARVC patients showed lower BVA vs. controls (p = 0.018), particularly in the subtricuspid region (1.4, IQR:0.5–3.1 vs. 3.8, IQR:2.5-5 mV, p = 0.037) and RV apex (2.5, IQR:1.5–4 vs. 4.3,IQR:2.9–6.1 mV, p = 0.019). BVA in all RV regions yielded a high sensitivity and specificity for ARVC diagnosis (AUC 59–78%, p < 0.05 for all), with the highest performance for the subtricuspid region (AUC 78%, 95% CI:0.75–0.81, p < 0.001, negative predictive value 100%). A positive correlation between BVA and an orthogonal catheter orientation (46°-90°:r = 0.106, p < 0.001), and a negative correlation between BVA and EGM duration (r = −0.370, p < 0.001) was found. Conclusions EAM using CFSC validates previous bipolar cut-off values for normal endocardial RV voltage amplitudes. RV voltages are generally lower in ARVC as compared to controls, with the subtricuspid area being commonly affected and having the highest discriminatory power to differentiate between ARVC and healthy controls. Therefore, EAM using CFSC constitutes a promising tool for diagnosis of ARVC

    Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement

    Get PDF
    The outbreak of the SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) pandemic re-shaped doctor-patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS-CoV-2 is not known. Severe COVID-19 patients may experience a “cytokine storm” and associated organ damage characterized by an exaggerated release of pro-inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti-inflammatory cytokines and type 2 responses. This expert-based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID-19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self-application. In case of an active SARS-CoV-2 infection, biological treatment needs to be stopped until clinical recovery and SARS-CoV-2 negativity is established and treatment with biologicals should be re-initiated. Maintenance of add-on therapy and a constant assessment of disease control, apart from acute management, are demanded

    Spatial transcriptomics combined with single-cell RNA-sequencing unravels the complex inflammatory cell network in atopic dermatitis

    Get PDF
    BackgroundAtopic dermatitis (AD) is the most common chronic inflammatory skin disease with complex pathogenesis for which the cellular and molecular crosstalk in AD skin has not been fully understood.MethodsSkin tissues examined for spatial gene expression were derived from the upper arm of 6 healthy control (HC) donors and 7 AD patients (lesion and nonlesion). We performed spatial transcriptomics sequencing to characterize the cellular infiltrate in lesional skin. For single‐cell analysis, we analyzed the single‐cell data from suction blister material from AD lesions and HC skin at the antecubital fossa skin (4 ADs and 5 HCs) and full‐thickness skin biopsies (4 ADs and 2 HCs). The multiple proximity extension assays were performed in the serum samples from 36 AD patients and 28 HCs.ResultsThe single‐cell analysis identified unique clusters of fibroblasts, dendritic cells, and macrophages in the lesional AD skin. Spatial transcriptomics analysis showed the upregulation of COL6A5, COL4A1, TNC, and CCL19 in COL18A1‐expressing fibroblasts in the leukocyte‐infiltrated areas in AD skin. CCR7‐expressing dendritic cells (DCs) showed a similar distribution in the lesions. Additionally, M2 macrophages expressed CCL13 and CCL18 in this area. Ligand–receptor interaction analysis of the spatial transcriptome identified neighboring infiltration and interaction between activated COL18A1‐expressing fibroblasts, CCL13‐ and CCL18‐expressing M2 macrophages, CCR7‐ and LAMP3‐expressing DCs, and T cells. As observed in skin lesions, serum levels of TNC and CCL18 were significantly elevated in AD, and correlated with clinical disease severity.ConclusionIn this study, we show the unknown cellular crosstalk in leukocyte‐infiltrated area in lesional skin. Our findings provide a comprehensive in‐depth knowledge of the nature of AD skin lesions to guide the development of better treatments

    Disrupted epithelial permeability as a predictor of severe COVID-19 development

    Get PDF
    BackgroundAn impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID‐19.MethodsLevels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID‐19 patients and 49 healthy controls.ResultsSignificantly high levels of circulating bacterial DNA were detected in severe COVID‐19 cases. In mild COVID‐19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID‐19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID‐19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6.ConclusionOur results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission
    corecore