3,251,325 research outputs found

    Quantum Global Strings and Their Correlation Functions

    Full text link
    A full quantum description of global vortex strings is presented in the framework of a pure Higgs system with a broken global U(1) symmetry in 3+1D. An explicit expression for the string creation operator is obtained, both in terms of the Higgs field and in the dual formulation where a Kalb-Ramond antisymmetric tensor gauge field is employed as the basic field. The quantum string correlation function is evaluated and from this, the string energy density is obtained. Potential application in cosmology (cosmic strings) and condensed matter (vortices in superfluids) are discussed.Comment: 14 pages, latex, no figure

    Neutrino Oscillations for Dummies

    Full text link
    The reality of neutrino oscillations has not really sunk in yet. The phenomenon presents us with purely quantum mechanical effects over macroscopic time and distance scales (milliseconds and 1000s of km). In order to help with the pedagogical difficulties this poses, I attempt here to present the physics in words and pictures rather than math. No disrespect is implied by the title; I am merely borrowing a term used by a popular series of self-help books

    Selective Control of the Symmetric Dicke Subspace in Trapped Ions

    Full text link
    We propose a method of manipulating selectively the symmetric Dicke subspace in the internal degrees of freedom of N trapped ions. We show that the direct access to ionic-motional subspaces, based on a suitable tuning of motion-dependent AC Stark shifts, induces a two-level dynamics involving previously selected ionic Dicke states. In this manner, it is possible to produce, sequentially and unitarily, ionic Dicke states with increasing excitation number. Moreover, we propose a probabilistic technique to produce directly any ionic Dicke state assuming suitable initial conditions.Comment: 5 pages and 1 figure. New version with minor changes and added references. Accepted in Physical Review

    Entanglement and optimal strings of qubits for memory channels

    Get PDF
    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels.Comment: 14 pages, 8 figures, latex, accepted for publication in Physical Review

    Osculating spaces to secant varieties

    Full text link
    We generalize the classical Terracini's Lemma to higher order osculating spaces to secant varieties. As an application, we address with the so-called Horace method the case of the dd-Veronese embedding of the projective 3-space

    Relaxation mechanisms: From Damour-Polyakov to Peccei-Quinn

    Get PDF
    The ralaxation mechanism of Damour-Polyakov for fixing the vacuum expectation value of certain scalar fields (moduli) in string theory could provide a convenient framework for the Peccei-Quinn relaxation mechanism and remove the narrow "axion window".Comment: 9 pages, late

    Coherent control of a self-trapped Bose-Einstein condensate

    Get PDF
    We study the behavior of a Bose-Einstein condensate held in an optical lattice. We first show how a self-trapping transition can be induced in the system by either increasing the number of atoms occupying a lattice site, or by raising the interaction strength above a critical value. We then investigate how applying a periodic driving potential to the self-trapped state can be used to coherently control the emission of a precise number of correlated bosons from the trapping-site. This allows the formation and transport of entangled bosonic states, which are of great relevance to novel technologies such as quantum information processing.Comment: 4 pages, 5 EPS figure

    Pressurized panel

    Get PDF
    Large area pressurized meteoroid penetration detector panels with maximum inherent structural rigidity are provided. The panels measure directly the penetration rate in materials to be used in spacecraft. Panel structure include an interconnected cellular configuration in which the cells have spaced periphery welds and tufts in their centers. A spot weld is made at the center point joining the panels
    corecore