55,284 research outputs found

    Hidden Spoor, Ruan Xiaoxu, And His Treatise On Reclusion

    Get PDF
    In early medieval China great attention was paid to compiling accounts of men in reclusion, yet the prefaces to these compilations often contain only vague or stale reasoning concerning the nature of reclusion itself. A preface by Shen Yue (441-513) is a notable exception: Shen differentiated between disengagement and reclusion. A slightly later contemporary of Shen, Ruan Xiaoxu (479-536), took issue with him in a unique and tightly constructed disquisition on what Ruan saw as a basic dichotomy in the Way of man: the root and overt traces. Ruan\u27s overlooked treatise is examined here, as are some relevant facets of his life

    Quasi-multipliers of Hilbert and Banach C*-bimodules

    Full text link
    Quasi-multipliers for a Hilbert C*-bimodule V were introduced by Brown, Mingo and Shen 1994 as a certain subset of the Banach bidual module V**. We give another (equivalent) definition of quasi-multipliers for Hilbert C*-bimodules using the centralizer approach and then show that quasi-multipliers are, in fact, universal (maximal) objects of a certain category. We also introduce quasi-multipliers for bimodules in Kasparov's sense and even for Banach bimodules over C*-algebras, provided these C*-algebras act non-degenerately. A topological picture of quasi-multipliers via the quasi-strict topology is given. Finally, we describe quasi-multipliers in two main situations: for the standard Hilbert bimodule l_2(A) and for bimodules of sections of Hilbert C*-bimodule bundles over locally compact spaces.Comment: 19 pages v2: to appear in Math. Scand., small glitches in one example and with formulation of definition correcte

    Recognizing and Curating Photo Albums via Event-Specific Image Importance

    Full text link
    Automatic organization of personal photos is a problem with many real world ap- plications, and can be divided into two main tasks: recognizing the event type of the photo collection, and selecting interesting images from the collection. In this paper, we attempt to simultaneously solve both tasks: album-wise event recognition and image- wise importance prediction. We collected an album dataset with both event type labels and image importance labels, refined from an existing CUFED dataset. We propose a hybrid system consisting of three parts: A siamese network-based event-specific image importance prediction, a Convolutional Neural Network (CNN) that recognizes the event type, and a Long Short-Term Memory (LSTM)-based sequence level event recognizer. We propose an iterative updating procedure for event type and image importance score prediction. We experimentally verified that image importance score prediction and event type recognition can each help the performance of the other.Comment: Accepted as oral in BMVC 201

    Simple vs complex temporal recurrences for video saliency prediction

    Get PDF
    This paper investigates modifying an existing neural network architecture for static saliency prediction using two types of recurrences that integrate information from the temporal domain. The first modification is the addition of a ConvLSTM within the architecture, while the second is a conceptually simple exponential moving average of an internal convolutional state. We use weights pre-trained on the SALICON dataset and fine-tune our model on DHF1K. Our results show that both modifications achieve state-of-the-art results and produce similar saliency maps. Source code is available at https://git.io/fjPiB

    Divide and Fuse: A Re-ranking Approach for Person Re-identification

    Full text link
    As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a "Divide and use" re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.Comment: Accepted by BMVC201

    Multispectral Deep Neural Networks for Pedestrian Detection

    Full text link
    Multispectral pedestrian detection is essential for around-the-clock applications, e.g., surveillance and autonomous driving. We deeply analyze Faster R-CNN for multispectral pedestrian detection task and then model it into a convolutional network (ConvNet) fusion problem. Further, we discover that ConvNet-based pedestrian detectors trained by color or thermal images separately provide complementary information in discriminating human instances. Thus there is a large potential to improve pedestrian detection by using color and thermal images in DNNs simultaneously. We carefully design four ConvNet fusion architectures that integrate two-branch ConvNets on different DNNs stages, all of which yield better performance compared with the baseline detector. Our experimental results on KAIST pedestrian benchmark show that the Halfway Fusion model that performs fusion on the middle-level convolutional features outperforms the baseline method by 11% and yields a missing rate 3.5% lower than the other proposed architectures.Comment: 13 pages, 8 figures, BMVC 2016 ora

    Deformable Part-based Fully Convolutional Network for Object Detection

    Full text link
    Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultaneously brings more invariance for classification and geometric information to refine localization. DP-FCN is composed of three main modules: a Fully Convolutional Network to efficiently maintain spatial resolution, a deformable part-based RoI pooling layer to optimize positions of parts and build invariance, and a deformation-aware localization module explicitly exploiting displacements of parts to improve accuracy of bounding box regression. We experimentally validate our model and show significant gains. DP-FCN achieves state-of-the-art performances of 83.1% and 80.9% on PASCAL VOC 2007 and 2012 with VOC data only.Comment: Accepted to BMVC 2017 (oral
    corecore