783 research outputs found
Accounting for both electron--lattice and electron--electron coupling in conjugated polymers: minimum total energy calculations on the Hubbard--Peierls hamiltonian
Minimum total energy calculations, which account for both electron--lattice
and electron--electron interactions in conjugated polymers are performed for
chains with up to eight carbon atoms. These calculations are motivated in part
by recent experimental results on the spectroscopy of polyenes and conjugated
polymers and shed light on the longstanding question of the relative importance
of electron--lattice vs. electron--electron interactions in determining the
properties of these systems.Comment: 6 pages, Plain TeX, FRL-PSD-93GR
Implementing the GBT Data Transmission Protocol in FPGAs
International audienceThe GBT chip is a radiation tolerant ASIC that can be used to implement bidirectional multipurpose 4.8 Gb/s optical links for high-energy physics experiments. It will be proposed to the LHC experiments for combined transmission of physics data, trigger, timing, fast and slow control and monitoring. Although radiation hardness is required on detectors, it is not necessary for the electronics located in the counting rooms. Therefore, a study is being made to implement these GBT links on FPGAs. This paper will describe the GBT protocol implementation, the configuration of the transceivers on Altera Stratix II GX and Xilinx Virtex 4, the optimization of resource for multi-transceivers, the first data transmission tests and the source code availabilit
Spin-Peierls Dimerization of a s=1/2 Heisenberg Antiferromagnet on a Square Lattice
Dimerization of a spin-half Heisenberg antiferromagnet on a square lattice is
investigated for several possible dimerized configurations, some of which are
shown to have lower ground state energies than the others. In particular, the
lattice deformations resulting in alternate stronger and weaker couplings along
both the principal axes of a square lattice are shown to result in a larger
gain in magnetic energy. In addition, a `columnar' configuration is shown to
have a lower ground state energy and a faster increase in the energy gap
parameter than a `staggered' configuration. The inclusion of unexpanded
exchange coupling leads to a power law behaviour for the magnetic energy gain
and energy gap, which is qualitatively different from that reported earlier.
Instead of increasing as , the two quantities depend on
as This is true both in the near critical
regime as well as in the far regime . It is suggested that the unexpanded exchange coupling is as much a source
of the logarithmic dependence as a correction due to the contribution of
umklapp processes. Staggered magnetization is shown to follow the same -dependence in all the configurations in the small -regime, while for
, it follows the power law .Comment: 12 pages, 7 Postscript figures, RevTex forma
Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition
We present exact diagonalization results on a modified Peierls-Hubbard model
for the neutral-ionic phase transition. The ground state potential energy
surface and the infrared intensity of the Peierls mode point to a strong,
non-linear electron-phonon coupling, with effects that are dominated by the
proximity to the electronic instability rather than by electronic correlations.
The huge infrared intensity of the Peierls mode at the ferroelectric
transition is related to the temperature dependence of the dielectric constant
of mixed-stack organic crystals.Comment: 4 pages, 4 figure
Supramolecular interactions in clusters of polar and polarizable molecules
We present a model for molecular materials made up of polar and polarizable
molecular units. A simple two state model is adopted for each molecular site
and only classical intermolecular interactions are accounted for, neglecting
any intermolecular overlap. The complex and interesting physics driven by
interactions among polar and polarizable molecules becomes fairly transparent
in the adopted model. Collective effects are recognized in the large variation
of the molecular polarity with supramolecular interactions, and cooperative
behavior shows up with the appearance, in attractive lattices, of discontinuous
charge crossovers. The mean-field approximation proves fairly accurate in the
description of the gs properties of MM, including static linear and non-linear
optical susceptibilities, apart from the region in the close proximity of the
discontinuous charge crossover. Sizeable deviations from the excitonic
description are recognized both in the excitation spectrum and in linear and
non-linear optical responses. New and interesting phenomena are recognized near
the discontinuous charge crossover for non-centrosymmetric clusters, where the
primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure
A Fully Bidirectional Optical Network With Latency Monitoring Capability for the Distribution of Timing-Trigger and Control Signals in High-Energy Physics Experiments
The present paper discusses recent advances on a Passive Optical Network inspired Timing-Trigger and Control scheme for the future upgrade of the TTC system installed in the LHC experiments' and more specifically the currently known as TTCex to TTCrx link. The timing PON is implemented with commercially available FPGAs and 1-Gigabit Ethernet PON transceivers and provides a fixed latency gigabit downlink that can carry level-1 trigger accept decisions and commands as well as an upstream link for feedback from the front-end electronics
Electronic polarization in pentacene crystals and thin films
Electronic polarization is evaluated in pentacene crystals and in thin films
on a metallic substrate using a self-consistent method for computing charge
redistribution in non-overlapping molecules. The optical dielectric constant
and its principal axes are reported for a neutral crystal. The polarization
energies P+ and P- of a cation and anion at infinite separation are found for
both molecules in the crystal's unit cell in the bulk, at the surface, and at
the organic-metal interface of a film of N molecular layers. We find that a
single pentacene layer with herring-bone packing provides a screening
environment approaching the bulk. The polarization contribution to the
transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and
increases by only ~ 10% at surfaces and interfaces, respectively. We also
compute the polarization energy of charge-transfer (CT) states with fixed
separation between anion and cation, and compare to electroabsorption data and
to submolecular calculations. Electronic polarization of ~ 1 eV per charge has
a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde
X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu(BO) System
X-band ESR measurements on a single crystal of SrCu(BO) system in
a temperature range between 10 K and 580 K are presented. The temperature and
angular dependence of unusually broad ESR spectra can be explained by the
inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields
by far the largest contribution to the linewidth. However, the well-accepted
picture of only out-of-plane interdimer DM vectors is not sufficient for
explanation of the observed angular dependence. In order to account for the
experimental linewidth anisotropy we had to include sizable in-plane components
of interdimer as well as intradimer DM interaction in addition to the
out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular
to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that
above the structural phase transition occurring at 395 K dynamical mechanism
should be present allowing for instantaneous DM interactions. Moreover, the
linewidth at an arbitrary temperature can be divided into two contributions;
namely, the first part arising from spin dynamics governed by the spin
Hamiltonian of the system and the second part due to significant spin-phonon
coupling. The nature of the latter mechanism is attributed to phonon-modulation
of the antisymmetric interaction, which is responsible for the observed linear
increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR
Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators
We theoretically study the nonlinear optical response and photoexcited states
of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is
calculated by using the exact diagonalization technique on small clusters. From
the systematic study of the dependence of \chi^(3) on dimensionality, we find
that the spin-charge separation plays a crucial role in enhancing \chi^(3) in
the one-dimensional (1D) Mott insulators. Based on this result, we propose a
holon-doublon model, which describes the nonlinear response in the 1D Mott
insulators. These findings show that the spin-charge separation will become a
key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200
Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model
We have carried out Density Matrix Renormalization Group (DMRG) calculations
on the ground state of long polyacene oligomers within a Pariser-Parr-Pople
(PPP) Hamiltonian. The PPP model includes long-range electron correlations
which are required for physically realistic modeling of conjugated polymers. We
have obtained the ground state energy as a function of the dimerization
and various correlation functions and structure factors for
. From energetics, we find that while the nature of the Peierls'
instabilityin polyacene is conditional and strong electron correlations enhance
the dimerization. The {\it cis} form of the distortion is favoured over the
{\it trans} form. However, from the analysis of correlation functions and
associated structure factors, we find that polyacene is not susceptible to the
formation of a bond order wave (BOW), spin density wave (SDW) or a charge
density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure
- …