741 research outputs found
High Efficiency Detection of Argon Scintillation Light of 128nm Using LAAPDs
The possibility of efficient collection and detection of vacuum ultraviolet
light as emitted by argon, krypton, and xenon gas is studied. Absolute quantum
efficiencies of large area avalanche photodiodes (LAAPDs) are derived at these
wavelengths. VUV light of wavelengths down to the 128nm of Ar emission is shown
to be detectable with silicon avalanche photodiodes at quantum efficiencies
above 42%. Flexible Mylar foil overcoated with Al+MgF is measured to have a
specular reflectivity of 91% at argon emission wavelength. Low-pressure
argon gas is shown to emit significant amounts of non-UV radiation. The average
energy expenditure for the creation of non-UV photons in argon gas at this
pressure is measured to be below 378 eV.Comment: 5 pages, 4 figures, Talk given at IEEE 2005 Nuclear Science Symposium
and Medical Imaging Conference, Puerto Ric
The Argon Dark Matter Experiment (ArDM)
The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for
the detection of dark matter particles which can scatter off the spinless argon
nuclei. These events producing a recoiling nucleus will be discerned by their
light to charge ratio, as well as the time structure of the scintillation
light. The experiment is presently under construction and will be commissioned
on surface at CERN. Here we describe the detector concept and give a short
review on the main detector components.Comment: Proceedings of 4th Patras workshop (DESY) on Axions, Wimps and Wisps
(4 pages, 4 figures
Luminescence quenching of the triplet excimer state by air traces in gaseous argon
While developing a liquid argon detector for dark matter searches we
investigate the influence of air contamination on the VUV scintillation yield
in gaseous argon at atmospheric pressure. We determine with a radioactive
alpha-source the photon yield for various partial air pressures and different
reflectors and wavelength shifters. We find for the fast scintillation
component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity.
However, the decay time of the slow component depends on gas purity and is a
good indicator for the total VUV light yield. This dependence is attributed to
impurities destroying the long-lived argon excimer states. The population ratio
between the slowly and the fast decaying excimer states is determined for
alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature.
The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec
at a partial air pressure of 2 x 10-6 mbar.Comment: 7 pages submitted to NIM
Study of nuclear recoils in liquid argon with monoenergetic neutrons
For the development of liquid argon dark matter detectors we assembled a
setup in the laboratory to scatter neutrons on a small liquid argon target. The
neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in
a deuterium plasma and are collimated onto a 3" liquid argon cell operating in
single-phase mode (zero electric field). Organic liquid scintillators are used
to tag scattered neutrons and to provide a time-of-flight measurement. The
setup is designed to study light pulse shapes and scintillation yields from
nuclear and electronic recoils as well as from {\alpha}-particles at working
points relevant to dark matter searches. Liquid argon offers the possibility to
scrutinise scintillation yields in noble liquids with respect to the
populations of the two fundamental excimer states. Here we present experimental
methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in
Journal of Physics: Conference Series (JCPS
First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply
Voltages above a hundred kilo-volt will be required to generate the drift
field of future very large liquid Argon Time Projection Chambers. The most
delicate component is the feedthrough whose role is to safely deliver the very
high voltage to the cathode through the thick insulating walls of the cryostat
without compromising the purity of the argon inside. This requires a
feedthrough that is typically meters long and carefully designed to be vacuum
tight and have small heat input. Furthermore, all materials should be carefully
chosen to allow operation in cryogenic conditions. In addition, electric fields
in liquid argon should be kept below a threshold to reduce risks of discharges.
The combination of all above requirements represents significant challenges
from the design and manufacturing perspective. In this paper, we report on the
successful operation of a feedthrough satisfying all the above requirements.
The details of the feedthrough design and its manufacturing steps are provided.
Very high voltages up to unprecedented voltages of -300 kV could be applied
during long periods repeatedly. A source of instability was observed, which was
specific to the setup configuration which was used for the test and not due to
the feedthrough itself.Comment: 13 pages, 9 figure
A double junction model of irradiated silicon pixel sensors for LHC
In this paper we discuss the measurement of charge collection in irradiated
silicon pixel sensors and the comparison with a detailed simulation. The
simulation implements a model of radiation damage by including two defect
levels with opposite charge states and trapping of charge carriers. The
modeling proves that a doubly peaked electric field generated by the two defect
levels is necessary to describe the data and excludes a description based on
acceptor defects uniformly distributed across the sensor bulk. In addition, the
dependence of trap concentrations upon fluence is established by comparing the
measured and simulated profiles at several fluences and bias voltages.Comment: Talk presented at the 10th European Symposium on Semiconductor
Detectors, June 12-16 2005, Wildbad Kreuth, Germany. 9 pages, 4 figure
Fluence Dependence of Charge Collection of irradiated Pixel Sensors
The barrel region of the CMS pixel detector will be equipped with ``n-in-n''
type silicon sensors. They are processed on DOFZ material, use the moderated
p-spray technique and feature a bias grid. The latter leads to a small fraction
of the pixel area to be less sensitive to particles. In order to quantify this
inefficiency prototype pixel sensors irradiated to particle fluences between
and 2.6\times 10^{15} \Neq have been bump bonded to
un-irradiated readout chips and tested using high energy pions at the H2 beam
line of the CERN SPS. The readout chip allows a non zero suppressed analogue
readout and is therefore well suited to measure the charge collection
properties of the sensors.
In this paper we discuss the fluence dependence of the collected signal and
the particle detection efficiency. Further the position dependence of the
efficiency is investigated.Comment: 11 Pages, Presented at the 5th Int. Conf. on Radiation Effects on
Semiconductor Materials Detectors and Devices, October 10-13, 2004 in
Florence, Italy, v3: more typos corrected, minor changes required by the
refere
First Production and Detection of Cold Antihydrogen Atoms
The ATHENA experiment recently produced the first atoms of cold antihydrogen.
This paper gives a brief review of how this was achieved.Comment: Invited talk at Int. Conf. on Low Energy Antiprotons 2003 (LEAP03),
to be published in NIM
- …
