1,119 research outputs found
Force-detected nuclear double resonance between statistical spin polarizations
We demonstrate nuclear double resonance for nanometer-scale volumes of spins
where random fluctuations rather than Boltzmann polarization dominate. When the
Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops
occur between two species of spins and their fluctuations become coupled. We
use magnetic resonance force microscopy to measure this effect between 1H and
13C spins in 13C-enriched stearic acid. The development of a cross-polarization
technique for statistical ensembles adds an important tool for generating
chemical contrast in nanometer-scale magnetic resonance.Comment: 14 pages, 4 figure
Soft-pulse dynamical decoupling in a cavity
Dynamical decoupling is a coherent control technique where the intrinsic and
extrinsic couplings of a quantum system are effectively averaged out by
application of specially designed driving fields (refocusing pulse sequences).
This entails pumping energy into the system, which can be especially dangerous
when it has sharp spectral features like a cavity mode close to resonance. In
this work we show that such an effect can be avoided with properly constructed
refocusing sequences. To this end we construct the average Hamiltonian
expansion for the system evolution operator associated with a single ``soft''
pi-pulse. To second order in the pulse duration, we characterize a symmetric
pulse shape by three parameters, two of which can be turned to zero by shaping.
We express the effective Hamiltonians for several pulse sequences in terms of
these parameters, and use the results to analyze the structure of error
operators for controlled Jaynes-Cummings Hamiltonian. When errors are cancelled
to second order, numerical simulations show excellent qubit fidelity with
strongly-suppressed oscillator heating.Comment: 9pages, 5eps figure
Gate-controlled nuclear magnetic resonance in an AlGaAs/GaAs quantum Hall device
We study the resistively detected nuclear magnetic resonance (NMR) in an
AlGaAs/GaAs quantum Hall device with a side gate. The strength of the hyperfine
interaction between electron and nuclear spins is modulated by tuning a
position of the two-dimensional electron systems with respect to the polarized
nuclear spins using the side-gate voltages. The NMR frequency is systematically
controlled by the gate-tuned technique in a semiconductor device.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
Optical pumping of quantum dot nuclear spins
An all-optical scheme to polarize nuclear spins in a single quantum dot is
analyzed. The hyperfine interaction with randomly oriented nuclear spins
presents a fundamental limit for electron spin coherence in a quantum dot; by
cooling the nuclear spins, this decoherence mechanism could be suppressed. The
proposed scheme is inspired by laser cooling methods of atomic physics and
implements a "controlled Overhauser effect" in a zero-dimensional structure
Potential for measurement of the tensor polarizabilities of nuclei in storage rings by the frozen spin method
The frozen spin method can be effectively used for a high-precision
measurement of the tensor electric and magnetic polarizabilities of the
deuteron and other nuclei in storage rings. For the deuteron, this method would
provide the determination of the deuteron's polarizabilities with absolute
precision of order of cm.Comment: 10 page
Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion
We investigate the quantum decoherence of frequency and polarization
variables of photons via polarization mode dispersion in optical fibers. By
observing the analogy between the propagation equation of the field and the
Schr\"odinger equation, we develop a master equation under Markovian
approximation and analytically solve for the field density matrix. We identify
distinct decay behaviors for the polarization and frequency variables for
single-photon and two-photon states. For the single photon case, purity
functions indicate that complete decoherence for each variable is possible only
for infinite fiber length. For entangled two-photon states passing through
separate fibers, entanglement associated with each variable can be completely
destroyed after characteristic finite propagation distances. In particular, we
show that frequency disentanglement is independent of the initial polarization
status. For propagation of two photons in a common fiber, the evolution of a
polarization singlet state is addressed. We show that while complete
polarization disentanglement occurs at a finite propagation distance, frequency
entanglement could survive at any finite distance for gaussian states.Comment: 2 figure
Unusual hyperfine interaction of Dirac electrons and NMR spectroscopy in graphene
Theory of nuclear magnetic resonance (NMR) in graphene is presented. The
canonical form of the electron-nucleus hyperfine interaction is strongly
modified by the linear electronic dispersion. The NMR shift and spin-lattice
relaxation time are calculated as function of temperature, chemical potential,
and magnetic field and three distinct regimes are identified: Fermi-,
Dirac-gas, and extreme quantum limit behaviors. A critical spectrometer
assessment shows that NMR is within reach for fully 13C enriched graphene of
reasonable size.Comment: 5 pages, 3 figure
Ferromagnetic Resonance in Spinor Dipolar Bose--Einstein Condensates
We used the Gross--Pitaevskii equations to investigate ferromagnetic
resonance in spin-1 Bose--Einstein condensates with a magnetic dipole-dipole
interaction. By introducing the dipole interaction, we obtained equations
similar to the Kittel equations used to represent ferromagnetic resonance in
condensed matter physics. These equations indicated that the ferromagnetic
resonance originated from dipolar interaction, and that the resonance frequency
depended upon the shape of the condensate. Furthermore, spin currents driven by
spin diffusions are characteristic of this system.Comment: 8 pages, 10 figure
Optimized pulse sequences for suppressing unwanted transitions in quantum systems
We investigate the nature of the pulse sequence so that unwanted transitions
in quantum systems can be inhibited optimally. For this purpose we show that
the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504
(2007)] in the context of inhibition of environmental dephasing effects is
optimal. We derive exact results for inhibiting the transitions and confirm the
results numerically. We posit a very significant improvement by usage of the
Uhrig sequence over an equidistant sequence in decoupling a quantum system from
unwanted transitions. The physics of inhibition is the destructive interference
between transition amplitudes before and after each pulse.Comment: 5 figure
- …