82 research outputs found

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Sensitivity of the stress response function to packing preparation

    Full text link
    A granular assembly composed of a collection of identical grains may pack under different microscopic configurations with microscopic features that are sensitive to the preparation history. A given configuration may also change in response to external actions such as compression, shearing etc. We show using a mechanical response function method developed experimentally and numerically, that the macroscopic stress profiles are strongly dependent on these preparation procedures. These results were obtained for both two and three dimensions. The method reveals that, under a given preparation history, the macroscopic symmetries of the granular material is affected and in most cases significant departures from isotropy should be observed. This suggests a new path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J. Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor

    New method to study stochastic growth equations: a cellular automata perspective

    Full text link
    We introduce a new method based on cellular automata dynamics to study stochastic growth equations. The method defines an interface growth process which depends on height differences between neighbors. The growth rule assigns a probability pi(t)=ρp_{i}(t)=\rho exp[κΓi(t)][\kappa \Gamma_{i}(t)] for a site ii to receive one particle at a time tt and all the sites are updated simultaneously. Here ρ\rho and κ\kappa are two parameters and Γi(t)\Gamma_{i}(t) is a function which depends on height of the site ii and its neighbors. Its functional form is specified through discretization of the deterministic part of the growth equation associated to a given deposition process. In particular, we apply this method to study two linear equations - the Edwards-Wilkinson (EW) equation and the Mullins-Herring (MH) equation - and a non-linear one - the Kardar-Parisi-Zhang (KPZ) equation. Through simulations and statistical analysis of the height distributions of the profiles, we recover the values for roughening exponents, which confirm that the processes generated by the method are indeed in the universality classes of the original growth equations. In addition, a crossover from Random Deposition to the associated correlated regime is observed when the parameter κ\kappa is varied.Comment: 6 pages, 7 figure

    Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results

    Full text link
    We study the response of a two-dimensional hexagonal packing of massless, rigid, frictionless spherical grains due to a vertically downward point force on a single grain at the top layer. We use a statistical approach, where each mechanically stable configuration of contact forces is equally likely. We show that this problem is equivalent to a correlated qq-model. We find that the response is double-peaked, where the two peaks, sharp and single-grain diameter wide, lie on the two downward lattice directions emanating from the point of the application of the external force. For systems of finite size, the magnitude of these peaks decreases towards the bottom of the packing, while progressively a broader, central maximum appears between the peaks. The response behaviour displays a remarkable scaling behaviour with system size NN: while the response in the bulk of the packing scales as 1N\frac{1}{N}, on the boundary it is independent of NN, so that in the thermodynamic limit only the peaks on the lattice directions persist. This qualitative behaviour is extremely robust, as demonstrated by our simulation results with different boundary conditions. We have obtained expressions of the response and higher correlations for any system size in terms of integers corresponding to an underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2 reorganized and rewritten; Details about the simulation procedure added in Sec.3.1. ; A new section, summarizing the final results and the calculation procedure adde

    Response of electrically coupled spiking neurons: a cellular automaton approach

    Full text link
    Experimental data suggest that some classes of spiking neurons in the first layers of sensory systems are electrically coupled via gap junctions or ephaptic interactions. When the electrical coupling is removed, the response function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons typically shows a decrease in dynamic range and sensitivity. In order to assess the effect of electrical coupling in the sensory periphery, we calculate the response to a Poisson stimulus of a chain of excitable neurons modeled by nn-state Greenberg-Hastings cellular automata in two approximation levels. The single-site mean field approximation is shown to give poor results, failing to predict the absorbing state of the lattice, while the results for the pair approximation are in good agreement with computer simulations in the whole stimulus range. In particular, the dynamic range is substantially enlarged due to the propagation of excitable waves, which suggests a functional role for lateral electrical coupling. For probabilistic spike propagation the Hill exponent of the response function is α=1\alpha=1, while for deterministic spike propagation we obtain α=1/2\alpha=1/2, which is close to the experimental values of the psychophysical Stevens exponents for odor and light intensities. Our calculations are in qualitative agreement with experimental response functions of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.

    Tricritical directed percolation

    Full text link
    We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations

    Effects of Friction and Disorder on the Quasi-Static Response of Granular Solids to a Localized Force

    Full text link
    The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which suggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].Comment: 21 pages (PDFLaTeX), 24 figures (some of them bitmapped to save space); submitted to Phys. Rev.

    Severe Hindrance of Viral Infection Propagation in Spatially Extended Hosts

    Get PDF
    The production of large progeny numbers affected by high mutation rates is a ubiquitous strategy of viruses, as it promotes quick adaptation and survival to changing environments. However, this situation often ushers in an arms race between the virus and the host cells. In this paper we investigate in depth a model for the dynamics of a phenotypically heterogeneous population of viruses whose propagation is limited to two-dimensional geometries, and where host cells are able to develop defenses against infection. Our analytical and numerical analyses are developed in close connection to directed percolation models. In fact, we show that making the space explicit in the model, which in turn amounts to reducing viral mobility and hindering the infective ability of the virus, connects our work with similar dynamical models that lie in the universality class of directed percolation. In addition, we use the fact that our model is a multicomponent generalization of the Domany-Kinzel probabilistic cellular automaton to employ several techniques developed in the past in that context, such as the two-site approximation to the extinction transition line. Our aim is to better understand propagation of viral infections with mobility restrictions, e.g., in crops or in plant leaves, in order to inspire new strategies for effective viral control
    corecore