6,270 research outputs found
A System Dynamics model to predict the impact of COVID-19 in Spain
Sanz, MT.; Caselles, A.; Micó, JC.; Soler, C. (2020). A System Dynamics model to predict the impact of COVID-19 in Spain. 146-151. http://hdl.handle.net/10251/178213S14615
Magnetic interaction of Co ions near the {10\bar{1}0} ZnO surface
Co-doped ZnO is the prototypical dilute magnetic oxide showing many of the
characteristics of ferromagnetism. The microscopic origin of the long range
order however remains elusive, since the conventional mechanisms for the
magnetic interaction, such as super-exchange and double exchange, fail either
at the fundamental or at a quantitative level. Intriguingly, there is a growing
evidence that defects both in point-like or extended form play a fundamental
role in driving the magnetic order. Here we explore one of such possibilities
by performing {\it ab initio} density functional theory calculations for the
magnetic interaction of Co ions at or near a ZnO \{100\} surface. We
find that extended surface states can hybridize with the -levels of Co and
efficiently mediate the magnetic order, although such a mechanism is effective
only for ions placed in the first few atomic planes near the surface. We also
find that the magnetic anisotropy changes at the surface from an hard-axis
easy-plane to an easy axis, with an associated increase of its magnitude. We
then conclude that clusters with high densities of surfacial Co ions may
display blocking temperatures much higher than in the bulk
Systematically improvable optimized atomic basis sets for {\it ab inito} calculations
We propose a unique scheme to construct fully optimized atomic basis sets for
density-functional calculations. The shapes of the radial functions are
optimized by minimizing the {\it spillage} of the wave functions between the
atomic orbital calculations and the converged plane wave calculations for dimer
systems. The quality of the bases can be systematically improved by increasing
the size of the bases within the same framework. The scheme is easy to
implement and very flexible. We have done extensive tests of this scheme for
wide variety of systems. The results show that the obtained atomic basis sets
are very satisfactory for both accuracy and transferability
Large-scale electronic structure theory for simulating nanostructure process
Fundamental theories and practical methods for large-scale electronic
structure calculations are given, in which the computational cost is
proportional to the system size. Accuracy controlling methods for microscopic
freedoms are focused on two practical solver methods, Krylov-subspace method
and generalized-Wannier-state method. A general theory called the
'multi-solver' scheme is also formulated, as a hybrid between different solver
methods. Practical examples are carried out in several insulating and metallic
systems with 10^3-10^5 atoms. All the theories provide general guiding
principles of constructing an optimal calculation for simulating nanostructure
processes, since a nanostructured system consists of several competitive
regions, such as bulk and surface regions, and the simulation is designed to
reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF
file in better graphics is available at
http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm
Dynamics and thermalization of the nuclear spin bath in the single-molecule magnet Mn12-ac: test for the theory of spin tunneling
The description of the tunneling of a macroscopic variable in the presence of
a bath of localized spins is a subject of great fundamental and practical
interest, and is relevant for many solid-state qubit designs. Instead of
focusing on the the "central spin" (as is most often done), here we present a
detailed study of the dynamics of the nuclear spin bath in the Mn12-ac
single-molecule magnet, probed by NMR experiments down to very low temperatures
(T = 20 mK). We find that the longitudinal relaxation rate of the 55Mn nuclei
in Mn12-ac becomes roughly T-independent below T = 0.8 K, and can be strongly
suppressed with a longitudinal magnetic field. This is consistent with the
nuclear relaxation being caused by quantum tunneling of the molecular spin, and
we attribute the tunneling fluctuations to the minority of fast-relaxing
molecules present in the sample. The transverse nuclear relaxation is also
T-independent for T < 0.8 K, and can be explained qualitatively and
quantitatively by the dipolar coupling between like nuclei in neighboring
molecules. We also show that the isotopic substitution of 1H by 2H leads to a
slower nuclear longitudinal relaxation, consistent with the decreased tunneling
probability of the molecular spin. Finally, we demonstrate that, even at the
lowest temperatures, the nuclear spins remain in thermal equilibrium with the
lattice phonons, and we investigate the timescale for their thermal
equilibration. After a review of the theory of macroscopic spin tunneling in
the presence of a spin bath, we argue that most of our experimental results are
consistent with that theory, but the thermalization of the nuclear spins is
not.Comment: 24 pages, 18 figures. Experimental study of the spin bath dynamics in
quantum nanomagnets, plus an extensive review and application of the theor
First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties
We present a theoretical study using density functional calculations of the
structural, electronic and magnetic properties of 3d transition metal, noble
metal and Zn atoms interacting with carbon monovacancies in graphene. We pay
special attention to the electronic and magnetic properties of these
substitutional impurities and found that they can be fully understood using a
simple model based on the hybridization between the states of the metal atom,
particularly the d shell, and the defect levels associated with an
unreconstructed D3h carbon vacancy. We identify three different regimes
associated with the occupation of different carbon-metal hybridized electronic
levels:
(i) bonding states are completely filled for Sc and Ti, and these impurities
are non-magnetic;
(ii) the non-bonding d shell is partially occupied for V, Cr and Mn and,
correspondingly, these impurties present large and localized spin moments;
(iii) antibonding states with increasing carbon character are progressively
filled for Co, Ni, the noble metals and Zn. The spin moments of these
impurities oscillate between 0 and 1 Bohr magnetons and are increasingly
delocalized.
The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v
symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct
position at the border between regimes (ii) and (iii) and shows a more complex
behavior: while is non-magnetic at the level of GGA calculations, its spin
moment can be switched on using GGA+U calculations with moderate values of the
U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th,
200
Mechanical properties of Graphene Nanoribbons
Herein, we investigate the structural, electronic and mechanical properties
of zigzag graphene nanoribbons upon the presence of stress applying Density
Functional Theory within the GGA-PBE approximation. The uniaxial stress is
applied along the periodic direction, allowing a unitary deformation in the
range of +/- 0.02%. The mechanical properties show a linear-response within
that range while the non-linear dependence is found for higher strain. The most
relevant results indicate that Young's modulus is considerable higher than
those determined for graphene and carbon nanotubes. The geometrical
reconstruction of the C-C bonds at the edges hardness the nanostructure.
Electronic structure features are not sensitive to strain in this linear
elastic regime, being an additional promise for the using of carbon
nanostructures in nano-electronic devices in the near future.Comment: 30 pages. J. Phys.: Condens. Matter (accepted
Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides
Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied
by means of fully-relativistic spin-polarized band structure calculations
within the local spin-density approximation. It is found that the size of the
magnetic anisotropy is fairly large (about 10 meV/unit formula), which is
comparable with experiment. This strong anisotropy is discussed in view of a
pseudo-gap formation, of which crucial ingredients are the exchange splitting
of U 5f states and their hybridization with chalcogen p states (f-p
hybridization). An anomalous trend in the anisotropy is found in the series
(US>>USe<UTe) and interpreted in terms of competition between localization of
the U 5f states and the f-p hybridization. It is the spin-orbit interaction on
the chalcogen p states that plays an essential role in enlarging the strength
of the f-p hybridization in UTe, leading to an anomalous systematic trend in
the magnetic anisotropy.Comment: 4 pages, 5 figure
Simulação do crescimento e desenvolvimento do trigo irrigado utilizando o modelo CERES-Wheat na região de Campinas - SP.
Este trabalho tem como objetivos apresentar de forma sucinta o funcionamento do modelo CERES-Wheat inserido na plataforma DSSAT 3.5, assim como apresentar os resultados obtidos das simulações realizadas com o modelo e os observados em experimento de campo, em especial a sua capacidade de detectar os efeitos da aplicação de N sob a fenologia e produtividade de grãos do trigo sob irrigação.bitstream/CNPTIA/9961/1/circtec2.pdfAcesso em: 28 maio 2008
Chirality in Bare and Passivated Gold Nanoclusters
Chiral structures have been found as the lowest-energy isomers of bare
(Au and Au_{28}(SCH_{16}_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in
the chiral clusters was calculated using the Hausdorff chirality measure. We
found that the index of chirality is higher in the passivated clusters and
decreases with the cluster size. These results are consistent with the observed
chiroptical activity recently reported for glutahione-passivated gold
nanoclusters, and provide theoretical support for the existence of chirality in
these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR
- …