1,040 research outputs found
Running Experiments with Confidence and Sanity
Analyzing data from large experimental suites is a daily task for anyone doing experimental algorithmics. In this paper we report on several approaches we tried for this seemingly mundane task in a similarity search setting, reflecting on the challenges it poses. We conclude by proposing a workflow, which can be implemented using several tools, that allows to analyze experimental data with confidence. The extended version of this paper and the support code are provided at https://github.com/Cecca/running-experiments
The K-Server Dual and Loose Competitiveness for Paging
This paper has two results. The first is based on the surprising observation
that the well-known ``least-recently-used'' paging algorithm and the
``balance'' algorithm for weighted caching are linear-programming primal-dual
algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that
generalizes them both and has an optimal performance guarantee for weighted
caching.
For the second result, the paper presents empirical studies of paging
algorithms, documenting that in practice, on ``typical'' cache sizes and
sequences, the performance of paging strategies are much better than their
worst-case analyses in the standard model suggest. The paper then presents
theoretical results that support and explain this. For example: on any input
sequence, with almost all cache sizes, either the performance guarantee of
least-recently-used is O(log k) or the fault rate (in an absolute sense) is
insignificant.
Both of these results are strengthened and generalized in``On-line File
Caching'' (1998).Comment: conference version: "On-Line Caching as Cache Size Varies", SODA
(1991
Comparison of Langevin and Markov channel noise models for neuronal signal generation
The stochastic opening and closing of voltage-gated ion channels produces
noise in neurons. The effect of this noise on the neuronal performance has been
modelled using either approximate or Langevin model, based on stochastic
differential equations or an exact model, based on a Markov process model of
channel gating. Yet whether the Langevin model accurately reproduces the
channel noise produced by the Markov model remains unclear. Here we present a
comparison between Langevin and Markov models of channel noise in neurons using
single compartment Hodgkin-Huxley models containing either and
, or only voltage-gated ion channels. The performance of the
Langevin and Markov models was quantified over a range of stimulus statistics,
membrane areas and channel numbers. We find that in comparison to the Markov
model, the Langevin model underestimates the noise contributed by voltage-gated
ion channels, overestimating information rates for both spiking and non-spiking
membranes. Even with increasing numbers of channels the difference between the
two models persists. This suggests that the Langevin model may not be suitable
for accurately simulating channel noise in neurons, even in simulations with
large numbers of ion channels
Oat-enriched diet reduces inflammatory status assessed by circulating cell-derived microparticle concentrations in type 2 diabetes
This work was funded by the Chief Scientists Office of the Scottish Government by a joint grant to the University of the Highland and Islands, Grampian Health Board, Biomathematics and Statistics Scotland and the Rowett Institute of Nutrition and Health, University of Aberdeen. Additional support was provided by Provexis plc.Peer reviewedPublisher PD
Distribution of TT virus (TTV), TTV-like minivirus, and related viruses in humans and nonhuman primates
AbstractTT virus (TTV) and TTV-like minivirus (TLMV) are small DNA viruses with single-stranded, closed circular, antisense genomes infecting man. Despite their extreme sequence heterogeneity (>50%), a highly conserved region in the untranslated region (UTR) allows both viruses to be amplified by polymerase chain reaction (PCR). TTV/TLMV infection was detected in 88 of 100 human plasma samples; amplified sequences were differentiated into TTV and TLMV by analysis of melting profiles, showing that both viruses were similarly prevalent. PCR with UTR primers also detected frequent infection with TTV/TLMV-related viruses in a wide range of apes (chimpanzees, gorillas, orangutans, gibbons) and African monkey species (mangabeys, drills, mandrills). These findings support the hypothesis for the co-evolution of TTV-like viruses with their hosts over the period of primate speciation, potentially analogous to the evolution of primate herpesviruses
Kuksa*: Self-Adaptive Microservices in Automotive Systems
In pervasive dynamic environments, vehicles connect to other objects to send
operational data and receive updates so that vehicular applications can provide
services to users on demand. Automotive systems should be self-adaptive,
thereby they can make real-time decisions based on changing operating
conditions. Emerging modern solutions, such as microservices could improve
self-adaptation capabilities and ensure higher levels of quality performance in
many domains. We employed a real-world automotive platform called Eclipse Kuksa
to propose a framework based on microservices architecture to enhance the
self-adaptation capabilities of automotive systems for runtime data analysis.
To evaluate the designed solution, we conducted an experiment in an automotive
laboratory setting where our solution was implemented as a microservice-based
adaptation engine and integrated with other Eclipse Kuksa components. The
results of our study indicate the importance of design trade-offs for quality
requirements' satisfaction levels of each microservices and the whole system
for the optimal performance of an adaptive system at runtime
- …