33 research outputs found

    Correlation between Associated Trees, Cocoa Trees and Carbon Stocks Potential in Cocoa Agroforests of Southern Cameroon

    Get PDF
    This study was conducted in the Cocoa Agro-Forests (CAF) of Mengomo’s locality. The aim was to evaluate the influence of some factors on carbon stocks. The sampling was done in 30 plots of 25 x 25 m 2 in which all trees with a dbh?10 cm were inventoried. The Shannon, Simpson and Evernnessindexes were calculated to characterize the diversity of trees associated with cocoa. 62 species belonging to 48 genera and 27 families were identified, the Anacardiaceae, Moraceae, Caesalpiniaceae,  Mimosaceae and Rutaceae, were revealed the most diverse families, with 5 species each. Shannon’s (3.66), Evernness’s (0.76) and Simpson’s (0.96) indexes have reflected a low diversity, dominated by some fewspecies. The average density of cocoa trees is 1028 trees/ha. They store about 22.51±5.86 Mg C/ha. Associated trees stored 124.20±60.05Mg C/ha for tree density of 113 trees/ha. These CAF sequestered about 146.71Mg C/ha. The multiple correspondence analyses showed that carbon stocks in the CAF are positively correlated with the associated trees and the age of the CAF and negatively correlated with the abundance of cocoa trees. The biomass of cocoa is independent of the associated trees, but is inversely related to the density of the associated trees

    Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus

    Get PDF
    Background In 2014, Western Africa experienced an unanticipated explosion of Ebola virus infections. What distinguishes fatal from non-fatal outcomes remains largely unknown, yet is key to optimising personalised treatment strategies. We used transcriptome data for peripheral blood taken from infected and convalescent recovering patients to identify early stage host factors that are associated with acute illness and those that differentiate patient survival from fatality. Results The data demonstrate that individuals who succumbed to the disease show stronger upregulation of interferon signalling and acute phase responses compared to survivors during the acute phase of infection. Particularly notable is the strong upregulation of albumin and fibrinogen genes, which suggest significant liver pathology. Cell subtype prediction using messenger RNA expression patterns indicated that NK-cell populations increase in patients who survive infection. By selecting genes whose expression properties discriminated between fatal cases and survivors, we identify a small panel of responding genes that act as strong predictors of patient outcome, independent of viral load. Conclusions Transcriptomic analysis of the host response to pathogen infection using blood samples taken during an outbreak situation can provide multiple levels of information on both disease state and mechanisms of pathogenesis. Host biomarkers were identified that provide high predictive value under conditions where other predictors, such as viral load, are poor prognostic indicators. The data suggested that rapid analysis of the host response to infection in an outbreak situation can provide valuable information to guide an understanding of disease outcome and mechanisms of disease

    Influenza A virus challenge models in cynomolgus macaques using the authentic inhaled aerosol and intra-nasal routes of infection

    No full text
    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections

    Role of CCL3L1-CCR5 Genotypes in the Epidemic Spread of HIV-1 and Evaluation of Vaccine Efficacy

    Get PDF
    Polymorphisms in CCR5, the major coreceptor for HIV, and CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine, are determinants of HIV-AIDS susceptibility. Here, we mathematically modeled the potential impact of these genetic factors on the epidemic spread of HIV, as well as on its prevention.Ro, the basic reproductive number, is a fundamental concept in explaining the emergence and persistence of epidemics. By modeling sexual transmission among HIV+/HIV- partner pairs, we find that Ro estimates, and concordantly, the temporal and spatial patterns of HIV outgrowth are highly dependent on the infecting partners' CCL3L1-CCR5 genotype. Ro was least and highest when the infected partner possessed protective and detrimental CCL3L1-CCR5 genotypes, respectively. The modeling data indicate that in populations such as Pygmies with a high CCL3L1 gene dose and protective CCR5 genotypes, the spread of HIV might be minimal. Additionally, Pc, the critical vaccination proportion, an estimate of the fraction of the population that must be vaccinated successfully to eradicate an epidemic was <1 only when the infected partner had a protective CCL3L1-CCR5 genotype. Since in practice Pc cannot be >1, to prevent epidemic spread, population groups defined by specific CCL3L1-CCR5 genotypes might require repeated vaccination, or as our models suggest, a vaccine with an efficacy of >70%. Further, failure to account for CCL3L1-CCR5-based genetic risk might confound estimates of vaccine efficacy. For example, in a modeled trial of 500 subjects, misallocation of CCL3L1-CCR5 genotype of only 25 (5%) subjects between placebo and vaccine arms results in a relative error of approximately 12% from the true vaccine efficacy.CCL3L1-CCR5 genotypes may impact on the dynamics of the HIV epidemic and, consequently, the observed heterogeneous global distribution of HIV infection. As Ro is lowest when the infecting partner has beneficial CCL3L1-CCR5 genotypes, we infer that therapeutic vaccines directed towards reducing the infectivity of the host may play a role in halting epidemic spread. Further, CCL3L1-CCR5 genotype may provide critical guidance for optimizing the design and evaluation of HIV-1 vaccine trials and prevention programs

    HIV-1 drug-resistance mutations among newly diagnosed patients before scaling-up programmes in Burkina Faso and Cameroon

    No full text
    We analysed whether mutations associated with resistance to antiretroviral (ARV) drugs circulate among treatment-naive HIV-1-infected individuals at a period when these drugs started to become more widely available in Africa. Overall, major resistance mutations in the pol gene, as defined by the International AIDS Society Resistance Testing-USA panel, were observed in 16 treatment-naive individuals. Eight of the 97 patients tested in Burkina Faso bore mutations conferring resistance to one drug class of ARV drugs: two to nucleoside reverse transcriptase inhibitors (NRTIs; M41L [n=1], M41L+T69S [n=1]), four to non-NRTIs (NNRTIs; V106A/V [n=1] and V108I [n=3]) and two to protease inhibitors (Pls; L33F [n=2]). In Cameroon, resistance mutations were identified in 8 of 102 patients: three to Pls (M46I/L [n=2], L33F [n=1]), three to NRTIs (T69N/T [n=1], M184V [n=1], A62V [n=1]) and two to NNRTIs (P236L [n=1], V108I [n=1]). It is important to note that not all genotypic drug-resistance algorithms give similar interpretations to the observed mutations. Population surveillance for ARV drug resistance is required and should be included in all implementation programmes

    Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection.

    No full text
    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections

    Thermoreversible Gel Formulations Containing Sodium Lauryl Sulfate or n-Lauroylsarcosine as Potential Topical Microbicides against Sexually Transmitted Diseases

    No full text
    The microbicidal efficacies of two anionic surfactants, sodium lauryl sulfate (SLS) and n-lauroylsarcosine (LS), were evaluated in cultured cells and in a murine model of herpes simplex type 2 (HSV-2) intravaginal infection. In vitro studies showed that SLS and LS were potent inhibitors of the infectivity of HSV-2 strain 333. The concentrations of SLS which inhibit viral infectivity by 50% (50% inhibitory dose) and 90% (90% inhibitory dose) were 32.67 and 46.53 μM, respectively, whereas the corresponding values for LS were 141.76 and 225.30 μM. In addition, intravaginal pretreatment of mice with thermoreversible gel formulations containing 2.5% SLS or 2.5% LS prior to the inoculation of HSV-2 strain 333 completely prevented the development of genital herpetic lesions and the lethality associated with infection. Of prime interest, no infectious virus could be detected in mouse vaginal mucosa. Both formulations still provided significant protection when viral challenge was delayed until 1 h after pretreatment. Finally, intravaginal application of gel formulations containing 2.5% SLS or 2.5% LS once daily for 14 days to rabbits did not induce significant irritations to the genital mucosa, as demonstrated from macroscopic and histopathologic examinations. These results suggest that thermoreversible gel formulations containing SLS or LS could represent potent and safe topical microbicides for the prevention of HSV-2 and possibly other sexually transmitted pathogens, including human immunodeficiency virus
    corecore