4,953 research outputs found

    Geometric transport along circular orbits in stationary axisymmetric spacetimes

    Full text link
    Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravitoelectromagnetic fields associated with the zero angular momentum observers and of the Frenet-Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure

    Inertial effects of an accelerating black hole

    Get PDF
    We consider the static vacuum C metric that represents the gravitational field of a black hole of mass mm undergoing uniform translational acceleration AA such that mA<1/(33)mA<1/(3\sqrt{3}). The influence of the inertial acceleration on the exterior perturbations of this background are investigated. In particular, we find no evidence for a direct spin-acceleration coupling.Comment: Proceedings of the XVI Conference of the Italian Society for General Relativity and Gravitation (SIGRAV), Vietri (SA), September 13-16, 2004. Prepared using revtex4 macro

    Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry

    Full text link
    We derive an exact general axi-symmetric solution of the coupled gravitational and electromagnetic fields in the tetrad theory of gravitation. The solution is characterized by four parameters MM (mass), QQ (charge), aa (rotation) and LL (NUT). We then, calculate the total exterior energy using the energy-momentum complex given by M{\o}ller in the framework of Weitzenbo¨\ddot{o}ck geometry. We show that the energy contained in a sphere is shared by its interior as well as exterior. We also calculate the components of the spatial momentum to evaluate the angular momentum distribution. We show that the only non-vanishing components of the angular momentum is in the Z direction.Comment: Latex. Will appear in IJMP

    Circular holonomy in the Taub-NUT spacetime

    Full text link
    Parallel transport around closed circular orbits in the equatorial plane of the Taub-NUT spacetime is analyzed to reveal the effect of the gravitomagnetic monopole parameter on circular holonomy transformations. Investigating the boost/rotation decomposition of the connection 1-form matrix evaluated along these orbits, one finds a situation that reflects the behavior of the general orthogonally transitive stationary axisymmetric case and indeed along Killing trajectories in general.Comment: 9 pages, LaTeX iopart class, no figure

    Design and Implementation of Distributed Resource Management for Time Sensitive Applications

    Full text link
    In this paper, we address distributed convergence to fair allocations of CPU resources for time-sensitive applications. We propose a novel resource management framework where a centralized objective for fair allocations is decomposed into a pair of performance-driven recursive processes for updating: (a) the allocation of computing bandwidth to the applications (resource adaptation), executed by the resource manager, and (b) the service level of each application (service-level adaptation), executed by each application independently. We provide conditions under which the distributed recursive scheme exhibits convergence to solutions of the centralized objective (i.e., fair allocations). Contrary to prior work on centralized optimization schemes, the proposed framework exhibits adaptivity and robustness to changes both in the number and nature of applications, while it assumes minimum information available to both applications and the resource manager. We finally validate our framework with simulations using the TrueTime toolbox in MATLAB/Simulink
    • …
    corecore