71,944 research outputs found
Recommended from our members
Design and finite element mode analysis of noncircular gear
The noncircular gear transmission is an important branch of the gear transmission, it is characterized by its compact structure, good dynamic equilibration and other advantages, and can be used in the automobile, engineering machine, ship, machine tool, aviation and spaceflight field etc. Studying on the dynamics feature of noncircular gear transmission can improve the ability to carry loads of, reduce the vibration and noise of, increase the life of the noncircular gear transmission machine, provides guidance for the design of the noncircular gear, and has significant theories and practical meanings. In this paper, the gear transmission technique is used to studied the design method of the noncircular gear, which contains distribution of teeth on the pitch curve, designs of the tooth tip curve and the tooth root curve, design of the tooth profile curve, the gear system dynamics principle is introduced to establish dynamics model for the noncircular gear; basic theory of finite element and mode analysis method are applied, finite element model for the noncircular gear is established, natural vibration characteristic of the noncircular gear is studied. And the oval gear is taken as an example, the mathematics software MathCAD, the 3D modeling software UG and the finite element software ABAQUS are used to realize precise 3D model of the oval gear. The finite element method is used, the natural vibration characteristic of the oval gear is studied, the main vibration types and natural frequencies of the oval gear and that of the equivalent cylindrical gears are analyzed and compared, the conclusions received reflect the dynamics performance of the oval gear, and solid foundation is laid for dynamics research and engineering application of the oval gear transmission
A rapid staining-assisted wood sampling method for PCR-based detection of pine wood nematode Bursaphelenchus xylophilus in Pinus massoniana wood tissue
For reasons of unequal distribution of more than one nematode species in wood, and limited
availability of wood samples required for the PCR-based method for detecting pinewood nematodes in
wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based
detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P.
massoniana was developed in this study. This comprised a series of new techniques: sampling, mass
estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination
for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of
0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then
the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that
adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots
(NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If
there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The
B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of
5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire
sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode
numbers in the wood of P. massonina as the prelimary sample selections for other more expensive
Bx-detection methods such as PCR assay
Superconductivity in Ti-doped Iron-Arsenide Compound Sr4Cr0.8Ti1.2O6Fe2As2
Superconductivity was achieved in Ti-doped iron-arsenide compound
Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The x-ray diffraction
measurement shows that this material has a layered structure with the space
group of \emph{P4/nmm}, and with the lattice constants a = b = 3.9003 A and c =
15.8376 A. Clear diamagnetic signals in ac susceptibility data and
zero-resistance in resistivity data were detected at about 6 K, confirming the
occurrence of bulk superconductivity. Meanwhile we observed a superconducting
transition in the resistive data with the onset transition temperature at 29.2
K, which may be induced by the nonuniform distribution of the Cr/Ti content in
the FeAs-42622 phase, or due to some other minority phase.Comment: 3 pages, 3 figure
LEARNING FROM NOISY SAMPLES FOR MAN-MADE IMPERVIOUS SURFACE MAPPING
Abstract. Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training
- …