23,107 research outputs found
A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China
Cosmic rays interact with the Earth's atmosphere to produce C, which
can be absorbed by trees. Therefore, rapid increases of C in tree rings
can be used to probe previous cosmic-ray events. By this method, three C
rapidly increasing events have been found. Plausible causes of these events
include large solar proton events, supernovae or short gamma-ray bursts.
However, due to the lack of measurements of C by year, the occurrence
frequency of such C rapidly increasing events is poorly known. In
addition, rapid increases may be hidden in the IntCal13 data with five-year
resolution. Here we report the result of C measurements using an ancient
buried tree during the period between BC 3388 and 3358. We find a rapid
increase of about 9\textperthousand~ in the C content from BC 3372 to BC
3371. We suggest that this event could originate from a large solar proton
event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
Isogeometric B\'ezier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry
In this paper we develop the isogeometric B\'ezier dual mortar method. It is
based on B\'ezier extraction and projection and is applicable to any spline
space which can be represented in B\'ezier form (i.e., NURBS, T-splines,
LR-splines, etc.). The approach weakly enforces the continuity of the solution
at patch interfaces and the error can be adaptively controlled by leveraging
the refineability of the underlying dual spline basis without introducing any
additional degrees of freedom. We also develop weakly continuous geometry as a
particular application of isogeometric B\'ezier dual mortaring. Weakly
continuous geometry is a geometry description where the weak continuity
constraints are built into properly modified B\'ezier extraction operators. As
a result, multi-patch models can be processed in a solver directly without
having to employ a mortaring solution strategy. We demonstrate the utility of
the approach on several challenging benchmark problems. Keywords: Mortar
methods, Isogeometric analysis, B\'ezier extraction, B\'ezier projectio
Bosonic resonating valence bond wave function for doped Mott insulators
We propose a new class of ground states for doped Mott insulators in the
electron second-quantization representation. They are obtained from a bosonic
resonating valence bond (RVB) theory of the t-J model. At half filling, the
ground state describes spin correlations of the S=1/2 Heisenberg model very
accurately. Its spin degrees of freedom are characterized by RVB pairing of
spins, the size of which decreases continuously as holes are doped into the
system. Charge degrees of freedom emerge upon doping and are described by
twisted holes in the RVB background. We show that the twisted holes exhibit an
off diagonal long range order (ODLRO) in the pseudogap ground state, which has
a finite pairing amplitude, but is short of phase coherence. Unpaired spins in
such a pseudogap ground state behave as free vortices, preventing
superconducting phase coherence. The existence of nodal quasiparticles is also
ensured by such a hidden ODLRO in the ground state, which is
non-Fermi-liquid-like in the absence of superconducting phase coherence. Two
distinct types of spin excitations can also be constructed. The superconducting
instability of the pseudogap ground state is discussed and a d-wave
superconducting ground state is obtained. This class of pseudogap and
superconducting ground states unifies antiferromagnetism, pseudogap,
superconductivity, and Mott physics into a new state of matter.Comment: 28 pages, 5 figures, final version to appear in Phys. Rev.
Spin correlated interferometry for polarized and unpolarized photons on a beam splitter
Spin interferometry of the 4th order for independent polarized as well as
unpolarized photons arriving simultaneously at a beam splitter and exhibiting
spin correlation while leaving it, is formulated and discussed in the quantum
approach. Beam splitter is recognized as a source of genuine singlet photon
states. Also, typical nonclassical beating between photons taking part in the
interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at
http://m3k.grad.hr/pavici
Drought events and their effects on vegetation productivity in China
Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)
Charmless decays and new physics effects in the mSUGRA model
By employing the QCD factorization approach, we calculate the new physics
contributions to the branching radios of the two-body charmless and
decays in the framework of the minimal supergravity (mSUGRA) model.
we choose three typical sets of the mSUGRA input parameters in which the Wilson
coefficient can be either SM-like (the case A and C) or has
a flipped-sign (the case B). We found numerically that (a) the SUSY
contributions are always very small for both case A and C; (b) for those
tree-dominated decays, the SUSY contributions in case B are also very small;
(c) for those QCD penguin-dominated decay modes, the SUSY contributions in case
B can be significant, and can provide an enhancement about to
the branching ratios of and decays, but a
reduction about to decays; and (d) the
large SUSY contributions in the case B may be masked by the large theoretical
errors dominated by the uncertainty from our ignorance of calculating the
annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version
- …
