24,441 research outputs found
Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall
Extratropical North Atlantic cooling has been tied to droughts over the Sahel in both paleoclimate observations and modeling studies. This study, which uses an atmospheric general circulation model (GCM) coupled to a slab ocean model that simulates this connection, explores the hypothesis that the extratropical North Atlantic cooling causes the Sahel droughts via an atmospheric teleconnection mediated by tropospheric cooling. The drying is also produced in a regional climate model simulation of the Sahel when reductions in air temperature (and associated geopotential height and humidity changes) from the GCM simulation are imposed as the lateral boundary conditions. This latter simulation explicitly demonstrates the central role of tropospheric cooling in mediating the atmospheric teleconnection from extratropical North Atlantic cooling. Diagnostic analyses are applied to the GCM simulation to infer teleconnection mechanisms. An analysis of top of atmosphere radiative flux changes diagnosed with a radiative kernel technique shows that extratropical North Atlantic cooling is augmented by a positive low cloud feedback and advected downstream, cooling Europe and North Africa. The cooling over North Africa is further amplified by a reduced greenhouse effect from decreased atmospheric specific humidity. A moisture budget analysis shows that the direct moisture effect and monsoon weakening, both tied to the ambient cooling and resulting circulation changes, and feedbacks by vertical circulation and evaporation augment the rainfall reduction. Cooling over the Tropical North Atlantic in response to the prescribed extratropical cooling also augments the Sahel drying. Taken together, they suggest a thermodynamic pathway for the teleconnection. The teleconnection may also be applicable to understanding the North Atlantic influence on Sahel rainfall over the twentieth century
Detection of X-ray periodicity from a new eclipsing polar candidate XGPS-I J183251-100106
We report the results from a detailed analysis of an archival XMM-Newton
observation of the X-ray source XGPS-I J183251-100106, which has been suggested
as a promising magnetic cataclysmic variable candidate based on its optical
properties. A single periodic signal of 1.5 hrs is detected from all EPIC
cameras on board XMM-Newton. The phase-averaged X-ray spectrum can be
well-modeled with a thermal bremsstrahlung of a temperature kT~50 keV. Both
X-ray spectral and temporal behavior of this system suggest it as a eclipsing
cataclysmic variable of AM Herculis (or polar) type.Comment: 15 pages, 6 figures, accepted for publication in Ap
The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents
We consider the secret key generation problem when sources are randomly
excited by the sender and there is a noiseless public discussion channel. Our
setting is thus similar to recent works on channels with action-dependent
states where the channel state may be influenced by some of the parties
involved. We derive single-letter expressions for the secret key capacity
through a type of source emulation analysis. We also derive lower bounds on the
achievable reliability and secrecy exponents, i.e., the exponential rates of
decay of the probability of decoding error and of the information leakage.
These exponents allow us to determine a set of strongly-achievable secret key
rates. For degraded eavesdroppers the maximum strongly-achievable rate equals
the secret key capacity; our exponents can also be specialized to previously
known results.
In deriving our strong achievability results we introduce a coding scheme
that combines wiretap coding (to excite the channel) and key extraction (to
distill keys from residual randomness). The secret key capacity is naturally
seen to be a combination of both source- and channel-type randomness. Through
examples we illustrate a fundamental interplay between the portion of the
secret key rate due to each type of randomness. We also illustrate inherent
tradeoffs between the achievable reliability and secrecy exponents. Our new
scheme also naturally accommodates rate limits on the public discussion. We
show that under rate constraints we are able to achieve larger rates than those
that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on
Information Theory; Revised in Oct 201
Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis
In this work we perform theoretical analysis about a coupled RC circuit with
constant driven currents. Starting from stochastic differential equations,
where voltages are subject to thermal noises, we derive time-correlation
functions, steady-state distributions and transition probabilities of the
system. The validity of the fluctuation theorem (FT) is examined for scenarios
with complete and incomplete descriptions.Comment: 4 pages, 1 figur
ATM optical contamination study - Reaction control system rocket engine space plume flow fields Interim report
Apollo telescopic experiment contamination by space vehicle exhaust product
Double-dot charge transport in Si single electron/hole transistors
We studied transport through ultra-small Si quantum dot transistors
fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K,
the devices show single-electron or single-hole transport through the
lithographically defined dot. At T<4K, current through the devices is
characterized by multidot transport. From the analysis of the transport in
samples with double-dot characteristics, we conclude that extra dots are formed
inside the thermally grown gate oxide which surrounds the lithographically
defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
- …
