24,441 research outputs found

    Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall

    Get PDF
    Extratropical North Atlantic cooling has been tied to droughts over the Sahel in both paleoclimate observations and modeling studies. This study, which uses an atmospheric general circulation model (GCM) coupled to a slab ocean model that simulates this connection, explores the hypothesis that the extratropical North Atlantic cooling causes the Sahel droughts via an atmospheric teleconnection mediated by tropospheric cooling. The drying is also produced in a regional climate model simulation of the Sahel when reductions in air temperature (and associated geopotential height and humidity changes) from the GCM simulation are imposed as the lateral boundary conditions. This latter simulation explicitly demonstrates the central role of tropospheric cooling in mediating the atmospheric teleconnection from extratropical North Atlantic cooling. Diagnostic analyses are applied to the GCM simulation to infer teleconnection mechanisms. An analysis of top of atmosphere radiative flux changes diagnosed with a radiative kernel technique shows that extratropical North Atlantic cooling is augmented by a positive low cloud feedback and advected downstream, cooling Europe and North Africa. The cooling over North Africa is further amplified by a reduced greenhouse effect from decreased atmospheric specific humidity. A moisture budget analysis shows that the direct moisture effect and monsoon weakening, both tied to the ambient cooling and resulting circulation changes, and feedbacks by vertical circulation and evaporation augment the rainfall reduction. Cooling over the Tropical North Atlantic in response to the prescribed extratropical cooling also augments the Sahel drying. Taken together, they suggest a thermodynamic pathway for the teleconnection. The teleconnection may also be applicable to understanding the North Atlantic influence on Sahel rainfall over the twentieth century

    Detection of X-ray periodicity from a new eclipsing polar candidate XGPS-I J183251-100106

    Full text link
    We report the results from a detailed analysis of an archival XMM-Newton observation of the X-ray source XGPS-I J183251-100106, which has been suggested as a promising magnetic cataclysmic variable candidate based on its optical properties. A single periodic signal of 1.5 hrs is detected from all EPIC cameras on board XMM-Newton. The phase-averaged X-ray spectrum can be well-modeled with a thermal bremsstrahlung of a temperature kT~50 keV. Both X-ray spectral and temporal behavior of this system suggest it as a eclipsing cataclysmic variable of AM Herculis (or polar) type.Comment: 15 pages, 6 figures, accepted for publication in Ap

    The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents

    Full text link
    We consider the secret key generation problem when sources are randomly excited by the sender and there is a noiseless public discussion channel. Our setting is thus similar to recent works on channels with action-dependent states where the channel state may be influenced by some of the parties involved. We derive single-letter expressions for the secret key capacity through a type of source emulation analysis. We also derive lower bounds on the achievable reliability and secrecy exponents, i.e., the exponential rates of decay of the probability of decoding error and of the information leakage. These exponents allow us to determine a set of strongly-achievable secret key rates. For degraded eavesdroppers the maximum strongly-achievable rate equals the secret key capacity; our exponents can also be specialized to previously known results. In deriving our strong achievability results we introduce a coding scheme that combines wiretap coding (to excite the channel) and key extraction (to distill keys from residual randomness). The secret key capacity is naturally seen to be a combination of both source- and channel-type randomness. Through examples we illustrate a fundamental interplay between the portion of the secret key rate due to each type of randomness. We also illustrate inherent tradeoffs between the achievable reliability and secrecy exponents. Our new scheme also naturally accommodates rate limits on the public discussion. We show that under rate constraints we are able to achieve larger rates than those that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on Information Theory; Revised in Oct 201

    Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis

    Full text link
    In this work we perform theoretical analysis about a coupled RC circuit with constant driven currents. Starting from stochastic differential equations, where voltages are subject to thermal noises, we derive time-correlation functions, steady-state distributions and transition probabilities of the system. The validity of the fluctuation theorem (FT) is examined for scenarios with complete and incomplete descriptions.Comment: 4 pages, 1 figur

    ATM optical contamination study - Reaction control system rocket engine space plume flow fields Interim report

    Get PDF
    Apollo telescopic experiment contamination by space vehicle exhaust product

    Double-dot charge transport in Si single electron/hole transistors

    Full text link
    We studied transport through ultra-small Si quantum dot transistors fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K, the devices show single-electron or single-hole transport through the lithographically defined dot. At T<4K, current through the devices is characterized by multidot transport. From the analysis of the transport in samples with double-dot characteristics, we conclude that extra dots are formed inside the thermally grown gate oxide which surrounds the lithographically defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
    corecore