26,240 research outputs found

    Consistent analysis of neutral- and charged-current neutrino scattering off carbon

    Full text link
    Background: Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for correct interpretation of results of ongoing and planned oscillation experiments. Purpose: Clarify possible source of disagreement between recent measurements of the cross sections on carbon. Method: Nuclear effects in (anti)neutrino scattering off carbon nucleus are described using the spectral function approach. The effect of two- and multi-nucleon final states is accounted for by applying an effective value of the axial mass, fixed to 1.23 GeV. Neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes are treated on equal footing. Results: The differential and total cross sections for the energy ranging from a few hundreds of MeV to 100 GeV are obtained and compared to the available data from the BNL E734, MiniBooNE, and NOMAD experiments. Conclusions: Nuclear effects in NCE and CCQE scattering seem to be very similar. Within the spectral function approach, the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of NCE and CCQE data does not seem to support the contribution of multi-nucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.Comment: 14 pages, 9 figures, detailed discussion of the role of FSI is adde

    Fast Determination of Lycopene Content and Soluble Solid Content of Cherry Tomatoes Using Metal Oxide Sensors Based Electronic Nose

    Get PDF
    Lycopene content (LC) and soluble solid content (SSC) are important quality indicators for cherry tomatoes. This study attempted simultaneous analysis of inner quality of cherry tomato by Electronic nose (E-nose) using multivariate analysis. E-nose was used for data acquisition, the response signals were regressed by multiple linear regression (MLR) and partial least square regression (PLS) to build predictive models. The performances of the predictive models were tested according to root mean square and correlation coefficient (R2) in the training set and prediction set. The results showed that MLR models were superior to PLS model, with higher value of R2 and lower values of for RMSE firmness, pH, SSC, and LC. Together with MLR, E-nose could be used to obtain firmness, pH, soluble solid and lycopene contents in cherry tomatoes

    Integer quantum Hall effect and topological phase transitions in silicene

    Full text link
    We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0,±2,±6,,\nu=0,\pm2,\pm6,\ldots, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0\nu=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus.Comment: 7 pages, 4 figure

    Superconducting properties of nanocrystalline MgB2_2 thin films made by an in situ annealing process

    Full text link
    We have studied the structural and superconducting properties of MgB2_2 thin films made by pulsed laser deposition followed by in situ annealing. The cross-sectional transmission electron microscopy reveals a nanocrystalline mixture of textured MgO and MgB2_2 with very small grain sizes. A zero-resistance transition temperature (Tc0T_{c0}) of 34 K and a zero-field critical current density (JcJ_c) of 1.3×1061.3 \times 10^6 A/cm2^2 were obtained. The irreversibility field was \sim 8 T at low temperatures, although severe pinning instability was observed. These bulk-like superconducting properties show that the in situ deposition process can be a viable candidate for MgB2_2 Josephson junction technologies

    A new metric for rotating charged Gauss-Bonnet black holes in AdS spaces

    Full text link
    This paper presents a new metric for slowly rotating charged Gauss-Bonnet black holes in higher dimensional anti-de Sitter spaces. Taking the angular momentum parameter aa up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action.Comment: 11 pages and accepted by Chin. Phys.

    Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe

    Full text link
    The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by PR
    corecore