108,180 research outputs found
Averaged null energy condition in Loop Quantum Cosmology
Wormhole and time machine are very interesting objects in general relativity.
However, they need exotic matters which are impossible in classical level to
support them. But if we introduce the quantum effects of gravity into the
stress-energy tensor, these peculiar objects can be constructed
self-consistently. Fortunately, loop quantum cosmology (LQC) has the potential
to serve as a bridge connecting the classical theory and quantum gravity.
Therefore it provides a simple way for the study of quantum effect in the
semiclassical case. As is well known, loop quantum cosmology is very successful
to deal with the behavior of early universe. In the early stage, if taken the
quantum effect into consideration, inflation is natural because of the
violation of every kind of local energy conditions. Similar to the inflationary
universe, the violation of the averaged null energy condition is the necessary
condition for the traversable wormholes. In this paper, we investigate the
averaged null energy condition in LQC in the framework of effective
Hamiltonian, and find out that LQC do violate the averaged null energy
condition in the massless scalar field coupled model.Comment: 5 page
Optical interface states protected by synthetic Weyl points
Weyl fermions have not been found in nature as elementary particles, but they
emerge as nodal points in the band structure of electronic and classical wave
crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the
interest in these topological points which are frequently perceived as
monopoles in momentum space. Here we report the experimental observation of
generalized optical Weyl points inside the parameter space of a photonic
crystal with a specially designed four-layer unit cell. The reflection at the
surface of a truncated photonic crystal exhibits phase vortexes due to the
synthetic Weyl points, which in turn guarantees the existence of interface
states between photonic crystals and any reflecting substrates. The reflection
phase vortexes have been confirmed for the first time in our experiments which
serve as an experimental signature of the generalized Weyl points. The
existence of these interface states is protected by the topological properties
of the Weyl points and the trajectories of these states in the parameter space
resembles those of Weyl semimetal "Fermi arcs surface states" in momentum
space. Tracing the origin of interface states to the topological character of
the parameter space paves the way for a rational design of strongly localized
states with enhanced local field.Comment: 36 pages, 9 figures. arXiv admin note: text overlap with
arXiv:1610.0434
An instability mechanism for particulate pipe flow
We present linear stability analysis for a simple model of particle-laden
pipe flow. The model consists of a continuum approximation for the particles
two-way coupled to the fluid velocity field via Stokes drag (Saffman 1962). We
extend previous analysis in a channel (Klinkenberg et al. 2011) to allow for
the initial distribution of particles to be inhomogeneous and in particular
consider the effect of allowing the particles to be preferentially located
around one radius in accordance with experimental observations. This simple
modification of the problem is enough to alter the stability properties of the
flow, and in particular can lead to a linear instability at experimentally
realistic parameters. The results are compared to the experimental work of
Matas et al. (2004a) and are shown to be consistent with the reported flow
regimes.Comment: 15 pages, 11 figure
Phonon-phason coupling in icosahedral quasicrystals
From relaxation simulations of decoration-based quasicrystal structure models
using microscopically based interatomic pair potentials, we have calculated the
(usually neglected) phonon-phason coupling constant. Its sign is opposite for
the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its
magnitude relative to the phonon and phason elastic constants is of order 1/10,
suggesting its effects are small but detectable. We also give a criterion for
when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included
Towards offering more useful data reliably to mobile cloudfrom wireless sensor network
The integration of ubiquitous wireless sensor network (WSN) and powerful mobile cloud computing (MCC) is a research topic that is attracting growing interest in both academia and industry. In this new paradigm, WSN provides data to the cloud, and mobile users request data from the cloud. To support applications involving WSN-MCC integration, which need to reliably offer data that are more useful to the mobile users from WSN to cloud, this paper first identifies the critical issues that affect the usefulness of sensory data and the reliability of WSN, then proposes a novel WSN-MCC integration scheme named TPSS, which consists of two main parts: 1) TPSDT (Time and Priority based Selective Data Transmission) for WSN gateway to selectively transmit sensory data that are more useful to the cloud, considering the time and priority features of the data requested by the mobile user; 2) PSS (Priority-based Sleep Scheduling) algorithm for WSN to save energy consumption so that it can gather and transmit data in a more reliable way. Analytical and experimental results demonstrate the effectiveness of TPSS in improving usefulness of sensory data and reliability of WSN for WSN-MCC integration
A Massive Protostar Embedded in the Scuba Core JCMT 18354-0649S
We report the discovery of an extremely red object embedded in the massive SCUBA core JCMT 18354-0649S. This object is not associated with any known radio or far-IR source, though it appears in Spitzer IRAC data obtained as part of the GLIMPSE survey. At shorter wavelengths, this embedded source exhibits an extreme color, K – L' = 6.7. At an assumed distance of 5.7 kpc, this source has a near-IR luminosity of ~1000 L_☉. Its spectral energy distribution (SED) rises sharply from 2.1 μm to 8 μm, similar to that of a Class 0 young stellar object. Theoretical modeling of the SED indicates that the central star has a mass of 6-12 M_☉, with an optical extinction of more than 30. As both inflow and outflow motions are present in JCMT 18354-0649S, we suggest that this deeply embedded source is (1) a massive protostar in the early stages of accretion, and (2) the driving source of a massive molecular outflow evident in HCN J = 3-2 profiles observed toward this region
High-sensing properties of magnetic plasmon resonances in double- and triple-rod structures
We numerically investigated the magnetic plasmon resonances in double-rod and
triple-rod structures (DRSs and TRSs, respectively) for sensing applications.
According to the equivalent circuit model, one magnetic plasmon mode was
induced in the DRS. Due to the hybridization effect, two magnetic plasmon modes
were obtained in the TRS. Compared with the electric plasmon resonance in a
single-rod structure (SRS), the electromagnetic fields near the DRS and TRS
were much more localized in the dielectric surrounding the structures at the
resonance wavelengths. This caused the magnetic plasmon resonance wavelengths
to become very sensitive to refractive index changes in the environment medium.
As a result, a large figure of merit that is much larger than the electric
plasmon modes of SRS could be obtained in the magnetic plasmon modes of DRS and
TRS. These magnetic plasmon mode properties enable the use of DRSs and TRSs as
sensing elements with remarkable performance
- …
