104,202 research outputs found
Possible TeV Source Candidates In The Unidentified EGRET Sources
We study the -ray emission from the pulsar magnetosphere based on
outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through
inverse Compton scattering using a one-zone model. We showed previously that
GeV radiation from the magnetosphere of mature pulsars with ages of years old can contribute to the high latitude unidentified EGRET
sources. We carry out Monte Carlo simulations of -ray pulsars in the
Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position,
proper motion velocity, period, and magnetic field distribution and evolution
based on observational statistics. We select from the simulation a sample of
mature pulsars in the Galactic plane () and in the high
latitude () which could be detected by EGRET. The TeV flux from
the pulsar wind nebulae of our simulated sample through the inverse Compton
scattering by relativistic electrons on the microwave cosmic background and
synchrotron seed photons are calculated. The predicted fluxes are consistent
with the present observational constraints. We suggest that strong EGRET
sources can be potential TeV source candidates for present and future
ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres
Phase stability and the arsenic vacancy defect in In<sub>x</sub>Ga<sub>1-x</sub>As
The introduction of defects, such as vacancies, into InxGa1-xAs can have a dramatic impact on the physical and electronic properties of the material. Here we employ ab initio simulations of quasirandom supercells to investigate the structure of InxGa1-xAs and then examine the energy and volume changes associated with the introduction of an arsenic vacancy defect. We predict that both defect energies and volumes for intermediate compositions of InxGa1-xAs differ significantly from what would be expected by assuming a simple linear interpolation of the end member defect energies/volumes
Size dependence of second-order hyperpolarizability of finite periodic chain under Su-Schrieffer-Heeger model
The second hyperpolarizability of
double-bond finite chain of trans-polyactylene is analyzed using the
Su-Schrieffer-Heeger model to explain qualitative features of the
size-dependence behavior of . Our study shows that is
{\it nonmonotonic} with and that the nonmonotonicity is caused by the
dominant contribution of the intraband transition to in polyenes.
Several important physical effects are discussed to reduce quantitative
discrepancies between experimental and our resultsComment: 3 figures, 1 tabl
Geometry-induced pulse instability in microdesigned catalysts: the effect of boundary curvature
We explore the effect of boundary curvature on the instability of reactive
pulses in the catalytic oxidation of CO on microdesigned Pt catalysts. Using
ring-shaped domains of various radii, we find that the pulses disappear
(decollate from the inert boundary) at a turning point bifurcation, and trace
this boundary in both physical and geometrical parameter space. These
computations corroborate experimental observations of pulse decollation.Comment: submitted to Phys. Rev.
Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFeCoAs
We report a study of high quality pnictide superconductor
BaFeCoAs thin films using time-domain THz spectroscopy.
Near T we find evidence for a coherence peak and qualitative agreement with
the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature,
we find that the real part of the THz conductivity is not fully suppressed and
is significantly smaller than the Matthis-Bardeen expectation. The
temperature dependence of the penetration depth follows a power law
with an unusually high exponent of 3.1. We interpret these results as
consistent with impurity scattering induced pair-breaking. Taken together our
results are strong evidence for an extended s symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no
change to tex
Temperature Dependence of Viscosity in Normal Fluid He Below 800mK Determined by a Micro-electro-mechanical Oscillator
A micro-electro-mechanical system vibrating in its shear mode was used to
study the viscosity of normal liquid He from 20mK to 770mK at 3bar, 21bar,
and 29bar. The damping coefficient of the oscillator was determined by
frequency sweeps through its resonance at each temperature. Using a slide film
damping model, the viscosity of the fluid was obtained. Our viscosity values
are compared with previous measurements and with calculated values from Fermi
liquid theory. The crossover from the classical to the Fermi liquid regime is
manifest in the temperature dependence of viscosity. In the Fermi liquid
regime, the temperature dependence of viscosity changes from to
on cooling, indicating a transition from the Stokes flow to the
Couette flow regime.Comment: The following article has been submitted for publication to Physical
Review
- …
