54,375 research outputs found
The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation : an in vivo and in vitro study
Protein phosphorylation is a fundamental mechanism regulating many aspects of cellular processes. Shell matrix proteins (SMPs) control crystal nucleation, polymorphism, morphology, and organization of calcium carbonate crystallites during shell formation. SMPs phosphorylation is suggested to be important in shell formation but the mechanism is largely unknown. Here, to investigate the mechanism of phosphorylation of SMPs in biomineralization, we performed in vivo and in vitro experiment. By injection of antibody against the anti-phosphoserine/threonine /tyrosine into the extrapallial fluid of the pearl oyster Pinctada fucata, phosphorylation of matrix proteins were significantly reduced after 6 days. Newly formed prismatic layers and nacre tablet were found to grow abnormally with reduced crystallinity and possibly changed crystal orientation shown by Raman spectroscopy. In addition, regeneration of shells is also inhibited in vivo. Then, protein phosphatase was used to dephosphorylate SMPs extracted from the shells. After dephosphorylation, the ability of SMPs to inhibiting calcium carbonate formation have been reduced. Surprisingly, the ability of SMPs to modulate crystal morphology have been largely compromised although phosphorylation extent remained to be at least half of the control. Furthermore, dephosphorylation of SMPs changed the distribution of protein occlusions and decreased the amount of protein occlusions inside crystals shown by confocal imaging, indicating interaction between phosphorylated SMPs and crystals. Taken together, this study provides insight into the mechanism of phosphorylation of SMPs during shell formation
Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice
The microwave (MW) photoresistance has been measured on a high-mobility
two-dimensional electron gas patterned with a shallow triangular antidot
lattice, where both the MW-induced resistance oscillations (MIRO) and
magnetoplasmon (MP) resonance are observed superposing on sharp commensurate
geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are
decoupled from each other in these experiments.Comment: 5 pages, 4 figures, paper accepted by PR
The hydrostatic equilibrium and Tsallis equilibrium for self-gravitating systems
Self-gravitating systems are generally thought to behavior non-extensively
due to the long-range nature of gravitational forces. We obtain a relation
between the nonextensive parameter q of Tsallis statistics, the temperature
gradient and the gravitational potential based on the equation of hydrostatic
equilibrium of self-gravitating systems. It is suggested that the nonextensive
parameter in Tsallis statistics has a clear physical meaning with regard to the
non-isothermal nature of the systems with long-range interactions and Tsallis
equilibrium distribution for the self-gravitating systems describes the
property of hydrostatic equilibrium of the systems.Comment: 7 pages, 9 Reference
Effective Mass of the Four Flux Composite Fermion at
We have measured the effective mass () of the four flux composite
fermion at Landau level filling factor (CF), using the
activation energy gaps at the fractional quantum Hall effect (FQHE) states
= 2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de
Haas (SdH) oscillations around . We find that the energy gaps show a
linear dependence on the effective magnetic field (), and from this linear dependence we obtain and
a disorder broadening 1 K for a sample of density /cm. The deduced from the temperature dependence of
the SdH effect shows large differences for and . For
, . It scales as with the mass
derived from the data around and shows an increase in as , resembling the findings around . For ,
increases rapidly with increasing and can be described by . This anomalous dependence on is
precursory to the formation of the insulating phase at still lower filling.Comment: 5 pages, 3 figure
Degenerate states of narrow semiconductor rings in the presence of spin orbit coupling: Role of time-reversal and large gauge transformations
The electron Hamiltonian of narrow semiconductor rings with the Rashba and
Dresselhaus spin orbit terms is invariant under time-reversal operation
followed by a large gauge transformation. We find that all the eigenstates are
doubly degenerate when integer or half-integer quantum fluxes thread the
quantum ring. The wavefunctions of a degenerate pair are related to each other
by the symmetry operation. These results are valid even in the presence of a
disorder potential. When the Zeeman term is present only some of these
degenerate levels anticross
Semiclassical Green Function in Mixed Spaces
A explicit formula on semiclassical Green functions in mixed position and
momentum spaces is given, which is based on Maslov's multi-dimensional
semiclassical theory. The general formula includes both coordinate and momentum
representations of Green functions as two special cases of the form.Comment: 8 pages, typeset by Scientific Wor
Power Corrections in Charmless B Decays
In this paper, we focus on the role of power corrections in QCD
factorization(QCDF) method in charmless two-body nonleptonic meson decays.
We use the ratio of the branching fraction of to
that of , for which the theoretical uncertainties are
greatly reduced, to show clearly that the power corrections in charmless B
decays are probably large. With other similar ratios considered, for example,
for the decay, it is very likely that, among various
sources of power corrections, annihilation topology plays an indispensable role
at least for penguin dominated channels. We also consider some
selective ratios of direct CP asymmetries. Among these, we find that, if power
corrections other than the chirally enhanced power corrections and annihilation
topology were negligible, QCDF would predict the direct CP asymmetry of to be about 3 times larger than that of ,
with opposite sign. Experimentally any significant deviation from this
prediction would suggest either new physics or possibly the importance of
long-distance rescattering effects.Comment: references and note added, to appear in Phys. Rev.
Novel insights into transfer processes in the reaction 16O+208Pb at sub-barrier energies
The collision of the doubly-magic nuclei O+Pb is a benchmark
in nuclear reaction studies. Our new measurements of back-scattered
projectile-like fragments at sub-barrier energies show show that transfer of 2
protons () is much more probable than -particle transfer.
transfer probabilities are strongly enhanced compared to expectations for the
sequential transfer of two uncorrelated protons; at energies around the fusion
barrier absolute probabilities for two proton transfer are similar to those for
one proton transfer. This strong enhancement indicates strong pairing
correlations in O, and suggests evidence for the occurrence of a nuclear
supercurrent of two-proton Cooper pairs in this reaction, already at energies
well below the fusion barrier.Comment: 5 pages, 3 figure
Enhancement of the Fractional Quantum Hall State in a Small In-Plane Magnetic Field
Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied
the Landau level filling factor fractional quantum Hall effect in a
perpendicular magnetic field 1.7 T and determined its dependence on
tilted magnetic fields. Contrary to all previous results, the 5/2 resistance
minimum and the Hall plateau are found to strengthen continuously under an
increasing tilt angle (corresponding to an in-plane
magnetic field 0 T). In the same range of
the activation gaps of both the 7/3 and the 8/3 states are found to increase
with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt
angle , and the composite fermion series [2+],
1, 2 can be identified. Based on our results, we discuss the relevance of
a Skyrmion spin texture at associated with small Zeeman energy in
wide quantum wells, as proposed by Wjs ., Phys. Rev.
Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let
- …
