55,442 research outputs found
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks
Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
A New Model for the Hard Time Lags in Black Hole X-Ray Binaries
The time-dependent Comptonized output of a cool soft X-ray source drifting
inward through an inhomogeneous hot inner disk or corona is numerically
simulated. We propose that this scenario can explain from first principles the
observed trends in the hard time lags and power spectra of the rapid aperiodic
variability of the X-ray emission of Galactic black-hole candidates.Comment: 10 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted
for ApJ Letter
Validating foundry technologies for extended mission profiles
This paper presents a process qualification and characterization strategy that can extend the foundry process reliability potential to meet specific automotive mission profile requirements. In this case study, data and analyses are provided that lead to sufficient confidence for pushing the allowed mission profile envelope of a process towards more aggressive (automotive) applications.\ud
\u
Measurements of the Magnetic Field Dependence of Lambda in YBa_2Cu_3O_6.95: Results as a Function of Temperature and Field Orientation
We present measurements of the magnetic field dependence of the penetration
depth Lambda(H) for untwinned YBa_2Cu_3O_6.95 for temperatures from 1.2 to 70 K
in dc fields up to 42 gauss and directions 0, 45 and 90 degrees with respect to
the crystal b-axis. The experiment uses an ac susceptometer with fields applied
parallel to the ab-plane of thin platelet samples. The resolution is about 0.15
Angstroms in zero dc field, degrading to 0.2 or 0.3 Angstroms at the higher
fields. At low temperatures the field dependencies are essentially linear in H,
ranging from 0.04 Angstroms/gauss for Delta-Lambda_a to 0.10 Angstroms/gauss
for Delta-Lambda_b, values comparable to the T=0 Yip and Sauls prediction for a
d-wave superconductor. However, the systematics versus temperature and
orientation do not agree with the d-wave scenario probably due, in part, to
residual sample problems.Comment: 5 pages, 4 figure
Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra
Cyg X-1 was observed in the high state at the conjunction orbital phase (0)
with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized
species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X,
and etc. In the high state the profile of the absorption lines are composed of
an extended red wing and a less extended blue wing. The red wings of higher
ionized species are more extended than that of lower ionized species. The
detection of these lines provides a way to probe the properties of the flow
around the companion and the black hole in Cyg X-1 during the high state. A
broad emission feature around 6.5 keV was significantly detected from the both
spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and
can be fitted with a Gaussian function rather than the Laor disk line model of
fluorescent Fe K line from an accretion disk. The implications of
these results on the structure of the accretion flow of Cyg X-1 in the high
state are discussed.Comment: 16 pages, 4 fiugres. accepted for publication in the v597 n2 ApJ
November 10, 2003 issu
Comptonization signatures in the rapid aperiodic variability of Galactic black-hole candidates
We investigate the effect of inverse-Compton scattering of flares of soft
radiation in different geometries of a hot, Comptonizing region and a colder
accretion disk around a solar-mass black hole. The photon-energy dependent
light curves, their Fourier transforms, power spectra and Fourier-period
dependent time lags of hard photons with respect to softer photons are
discussed. On the basis of a comparison with existing data we find arguments
against Comptonization of external soft radiation as well as Comptonization in
a homogeneous medium as dominant mechanisms for the rapid aperiodic variability
in Galactic black-hole candidates. Possible further observational tests for the
influence of Comptonization on the rapid aperiodic variability of Galactic
black-hole candidates are suggested.Comment: 32 pages, including 10 figures and 2 tables; uses epsf.sty,
rotate.sty; submitted to Ap
Two resonant magnetic modes in an overdoped high- superconductor
A detailed inelastic neutron scattering study of the overdoped high
temperature copper oxide superconductor
reveals two distinct magnetic resonant modes in the superconducting state. The
modes differ in their symmetry with respect to exchange between adjacent copper
oxide layers. Counterparts of the mode with odd symmetry, but not the one with
even symmetry, had been observed before at lower doping levels. The observation
of the even mode resolves a long-standing puzzle, and the spectral weight ratio
of both modes yields an estimate of the onset of particle-hole spin-flip
excitations.Comment: Submitted to PR
One-loop Helicity Amplitudes for Top Quark Pair Production in Randall-Sundrum Model
In this paper, we show how to calculate analytically the one-loop helicity
amplitudes for the process induced by KK gluon,
using the spinor-helicity formalism. A minimal set of Feynman rules which are
uniquely fixed by gauge invariance and the color representation of the KK gluon
are derived and used in the calculation. Our results can be applied to a
variety of models containing a massive color octet vector boson.Comment: 37 pages, 10 figures, journal versio
- …
