21,100 research outputs found
Transonic calculations for a flexible supercritical wing and comparison with experiment
Pressure data measured on the flexible DAST ARW-2 wing are compared with results calculated using the transonic small perturbation code XTRAN3S. A brief description of the analysis is given and a recently-developed grid coordinate transformation is described. Calculations are presented for the rigid and flexible wing for Mach numbers from 0.60 to 0.90 and dynamic pressures from 0 to 1000 psf. Calculated and measured static pressures and wing deflections are compared, and calculated static aeroelastic trends are given. Attempts to calculate the transonic instability boundary of the wing are described
Gravitational waves from black hole collisions via an eclectic approach
We present the first results in a new program intended to make the best use
of all available technologies to provide an effective understanding of waves
from inspiralling black hole binaries in time for imminent observations. In
particular, we address the problem of combining the close-limit approximation
describing ringing black holes and full numerical relativity, required for
essentially nonlinear interactions. We demonstrate the effectiveness of our
approach using general methods for a model problem, the head-on collision of
black holes. Our method allows a more direct physical understanding of these
collisions indicating clearly when non-linear methods are important. The
success of this method supports our expectation that this unified approach will
be able to provide astrophysically relevant results for black hole binaries in
time to assist gravitational wave observations.Comment: 4 pages, 3 eps figures, Revte
EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment
Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time
Investigation and suppression of high dynamic response encountered on an elastic supercritical wing
The DAST Aeroelastic Research Wing had been previously in the NASA Langley TDT and an unusual instability boundary was predicted based upon supercritical response data. Contrary to the predictions, no instability was found during the present test. Instead a region of high dynamic wing response was observed which reached a maximum value between Mach numbers 0.92 and 0.93. The amplitude of the dynamic response increased directly with dynamic pressure. The reponse appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on the upper and lower wing surfaces. The onset of flow separation coincided with the occurrence of strong shocks on a surface. A controller was designed to suppress the wing response. The control law attenuated the response as compared with the uncontrolled case and added a small but significant amount of damping for the lower density condition
Cavallo's Multiplier for in situ Generation of High Voltage
A classic electrostatic induction machine, Cavallo's multiplier, is suggested
for in situ production of very high voltage in cryogenic environments. The
device is suitable for generating a large electrostatic field under conditions
of very small load current. Operation of the Cavallo multiplier is analyzed,
with quantitative description in terms of mutual capacitances between
electrodes in the system. A demonstration apparatus was constructed, and
measured voltages are compared to predictions based on measured capacitances in
the system. The simplicity of the Cavallo multiplier makes it amenable to
electrostatic analysis using finite element software, and electrode shapes can
be optimized to take advantage of a high dielectric strength medium such as
liquid helium. A design study is presented for a Cavallo multiplier in a
large-scale, cryogenic experiment to measure the neutron electric dipole
moment.Comment: 9 pages, 10 figure
Phases of massive scalar field collapse
We study critical behavior in the collapse of massive spherically symmetric
scalar fields. We observe two distinct types of phase transition at the
threshold of black hole formation. Type II phase transitions occur when the
radial extent of the initial pulse is less than the Compton
wavelength () of the scalar field. The critical solution is that
found by Choptuik in the collapse of massless scalar fields. Type I phase
transitions, where the black hole formation turns on at finite mass, occur when
. The critical solutions are unstable soliton stars with
masses \alt 0.6 \mu^{-1}. Our results in combination with those obtained for
the collapse of a Yang-Mills field~{[M.~W. Choptuik, T. Chmaj, and P. Bizon,
Phys. Rev. Lett. 77, 424 (1996)]} suggest that unstable, confined solutions to
the Einstein-matter equations may be relevant to the critical point of other
matter models.Comment: 5 pages, RevTex, 4 postscript figures included using psfi
Solar dynamic power systems for space station
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied
- …
