11,768 research outputs found

    Tunable negative permeability in a three-dimensional superconducting metamaterial

    Get PDF
    We report on highly tunable radio frequency (rf) characteristics of a low-loss and compact three dimensional (3D) metamaterial made of superconducting thin film spiral resonators. The rf transmission spectrum of a single element of the metamaterial shows a fundamental resonance peak at ∼\sim24.95 MHz that shifts to a 25%\% smaller frequency and becomes degenerate when a 3D array of such elements is created. The metamaterial shows an \emph{in-situ} tunable narrow frequency band in which the real part of the effective permeability is negative over a wide range of temperature, which reverts to gradually near-zero and positive values as the superconducting critical temperature is approached. This metamaterial can be used for increasing power transfer efficiency and tunability of electrically small rf-antennas.Comment: 6 pages, 4 figure

    A stochastic spectral analysis of transcriptional regulatory cascades

    Get PDF
    The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology

    Coherent control of photon transmission : slowing light in coupled resonator waveguide doped with Λ\Lambda Atoms

    Full text link
    In this paper, we propose and study a hybrid mechanism for coherent transmission of photons in the coupled resonator optical waveguide (CROW) by incorporating the electromagnetically induced transparency (EIT) effect into the controllable band gap structure of the CROW. Here, the configuration setup of system consists of a CROW with homogeneous couplings and the artificial atoms with Λ\Lambda-type three levels doped in each cavity. The roles of three levels are completely considered based on a mean field approach where the collection of three-level atoms collectively behave as two-mode spin waves. We show that the dynamics of low excitations of atomic ensemble can be effectively described by an coupling boson model. The exactly solutions show that the light pulses can be stopped and stored coherently by adiabatically controlling the classical field.Comment: 10 pages, 6 figure

    A systematic study on the binding energy of Λ\Lambda hypernuclei

    Full text link
    In this paper, we calculated the binding energy per baryon of the Λ\Lambda hypernuclei systemically, using the relativistic mean field theory (RMF) in a statistic frame. Some resemble properties are found among most of the hypernuclei found in experiments. The data show that a Λ\Lambda hypernucleus will be more stable, if it is composed of a Λ\Lambda hyperon adding to a stable normal nuclear core, or a Λ\Lambda hyperon replacing a neutron in a stable normal nuclear core. According to our calculations, existences of some new Λ\Lambda hypernuclei are predicted under the frame of RMF.Comment: 8 pages, 6 figures, 3 table

    Electromagnetic manipulation for anti-Zeno effect in an engineered quantum tunneling process

    Full text link
    We investigate the quantum Zeno and anti-Zeno effects for the irreversible quantum tunneling from a quantum dot to a ring array of quantum dots. By modeling the total system with the Anderson-Fano-Lee model, it is found that the transition from the quantum Zeno effect to quantum anti-Zeno effect can happen as the magnetic flux and the gate voltage were adjusted.Comment: 6 pages, 5 figure

    Online Fault Classification in HPC Systems through Machine Learning

    Full text link
    As High-Performance Computing (HPC) systems strive towards the exascale goal, studies suggest that they will experience excessive failure rates. For this reason, detecting and classifying faults in HPC systems as they occur and initiating corrective actions before they can transform into failures will be essential for continued operation. In this paper, we propose a fault classification method for HPC systems based on machine learning that has been designed specifically to operate with live streamed data. We cast the problem and its solution within realistic operating constraints of online use. Our results show that almost perfect classification accuracy can be reached for different fault types with low computational overhead and minimal delay. We have based our study on a local dataset, which we make publicly available, that was acquired by injecting faults to an in-house experimental HPC system.Comment: Accepted for publication at the Euro-Par 2019 conferenc

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiOâ‚‚ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiOâ‚‚ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council

    Coupled cavity QED for coherent control of photon transmission (I): Green function approach for hybrid systems with two-level doping

    Get PDF
    This is the first one of a series of our papers theoretically studying the coherent control of photon transmission along the coupled resonator optical waveguide (CROW) by doping artificial atoms for various hybrid structures. We will provide the several approaches correspondingly based on Green function, the mean field method and spin wave theory et al. In the present paper we adopt the two-time Green function approach to study the coherent transmission photon in a CROW with homogeneous couplings, each cavity of which is doped by a two-level artificial atom. We calculate the two-time correlation function for photon in the weak-coupling case. Its poles predict the exact dispersion relation, which results in the group velocity coherently controlled by the collective excitation of the doping atoms. We emphasize the role of the population inversion of doping atoms induced by some polarization mechanism.Comment: 11 pages, 9 figure
    • …
    corecore