101,883 research outputs found
Tuning magnetic anisotropy of epitaxial Ag/Fe/Fe0.5Co0.5/MgO(001) films
Single crystalline Ag/Fe/Fe0.5Co0.5/MgO(001) films were grown by Molecular Beam Epitaxy and investigated by Magneto-Optic Kerr Effect (MOKE). We find that even though the 4-fold magnetic anisotropies of Ag/Fe/MgO(001) and Ag/Fe0.5Co0.5/MgO(001) films are different from the corresponding bulk values, their opposite signs allow a fine tuning of the 4-fold magnetic anisotropy in Ag/Fe/Fe0.5Co0.5/MgO(001) films by varying the Fe and Fe0.5Co0.5 film thicknesses. In particular, the critical point of zero anisotropy can be achieved in a wide range of film thicknesses. Using Rotational MOKE, we determined and constructed the anisotropy phase diagram in the Fe and Fe0.5Co0.5 thickness plane from which the zero anisotropy exhibits a linear relation between the Fe and Fe0.5Co0.5 thickness
Bose-Einstein condensates in RF-dressed adiabatic potentials
Bose-Einstein condensates of Rb atoms are transferred into
radio-frequency (RF) induced adiabatic potentials and the properties of the
corresponding dressed states are explored. We report on measurements of the
spin composition of dressed condensates. We also show that adiabatic potentials
can be used to trap atom gases in novel geometries, including suspending a
cigar-shaped cloud above a curved sheet of atoms
Optimal Controlled Teleportation
We give the analytic expressions of maximal probabilities of successfully
controlled teleportating an unknown qubit via every kind of tripartite states.
Besides, another kind of localizable entanglement is also determined.
Furthermore, we give the sufficient and necessary condition that a three-qubit
state can be collapsed to an EPR pair by a measurement on one qubit, and
characterize the three-qubit states that can be used as quantum channel for
controlled teleporting a qubit of unknown information with unit probability and
with unit fidelity.Comment: 4 page
Dynamin- and Rab5-Dependent Endocytosis of a Ca<sup>2+</sup>-Activated K<sup>+</sup> Channel, KCa2.3
Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca2+-activated K+ channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane. © 2012 Gao et al
Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts
We investigate the expected neutrino emissivity from nuclear collisions in
magnetically dominated collisional models of gamma-ray bursts, motivated by
recent observational and theoretical developments. The results indicate that
significant multi-GeV neutrino fluxes are expected for model parameter values
which are typical of electromagnetically detected bursts. We show that for
detecting at least one muon event in Icecube and its Deep Core sub-array, a
single burst must be near the high end of the luminosity function and at a
redshift . We also calculate the luminosity and distance ranges
that can generate muon events per GRB in the same detectors, which may
be of interest if simultaneously detected electromagnetically, or if measured
with future extensions of Icecube or other neutrino detectors with larger
effective volume and better sensitivity.Comment: 12 pages, 7 figures, accepted version for Phys.Rev.
Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell
A compact circularly polarized (CP) patch antenna using a composite right/left-handed (CRLH) transmission line (TL) unit-cell is proposed. The CRLH TL unit-cell includes a complementary split ring resonator (CSRR) for shunt inductance and a gap loaded with a circular-shaped slot for series capacitance. The CSRR can decrease the TM10 mode resonance frequency, thus reducing the electrical size of the proposed antenna. In addition, the asymmetry of the CSRR brings about the TM01 mode, which can be combined with the TM10 mode by changing the slot radius. The combination of these two orthogonal modes with 90° phase shift makes the proposed antenna provide a CP property. The experimental results show that the proposed antenna has a wider axial ratio bandwidth and a smaller electrical size than the reported CP antennas. Moreover, the proposed antenna is designed without impedance transformer, 90° phase shift, dual feed and ground via
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy
Chalcogen-hyperdoped silicon shows potential applications in silicon-based
infrared photodetectors and intermediate band solar cells. Due to the low solid
solubility limits of chalcogen elements in silicon, these materials were
previously realized by femtosecond or nanosecond laser annealing of implanted
silicon or bare silicon in certain background gases. The high energy density
deposited on the silicon surface leads to a liquid phase and the fast
recrystallization velocity allows trapping of chalcogen into the silicon
matrix. However, this method encounters the problem of surface segregation. In
this paper, we propose a solid phase processing by flash-lamp annealing in the
millisecond range, which is in between the conventional rapid thermal annealing
and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon
shows a substitutional fraction of around 70% with an implanted concentration
up to 2.3%. The resistivity is lower and the carrier mobility is higher than
those of nanosecond pulsed laser annealed samples. Our results show that
flash-lamp annealing is superior to laser annealing in preventing surface
segregation and in allowing scalability.Comment: 19 pages, 7 figures, to be published at Scientific Report
Estimations of at RHIC from a QGP Model with Diquarks
Assuming that axial-vector and scalar diquarks exist in the Quark-Gluon
Plasma near the critical temporature , baryons can be produced from
quark-diquark interactions. In RHIC conditions ( and
), the ratio may be larger than 1, based on
the concept that QGP with diquarks would exist. This unusual result might be a
helpful evidence for QGP existing in RHIC.Comment: 6 pages, 1 figure. accepted by J.Phys.
- …
