1,752 research outputs found

    Meta-analytic Findings on Grouping Programs

    Full text link
    Meta-analytic reviews have focused on five distinct instructional programs that separate students by ability: multilevel dasses, cross-grade programs, within-class grouping, enriched classes for the gifted and talented, and accelerated classes. The reviews show that effects are a function of program type. Multilevel classes, which entail only minor adjustment of course content for ability groups, usually have little or no effect on student achievement. Programs that entail more substantial adjustment of curriculum to ability, such as cross-grade and within-class programs, produce clear positive effects. Programs of enrichment and acceleration, which usually involve the greatest amount of curricular adjustment, have the largest effects on student learning. These results doe not support recent claims that no one benefits from grouping or that students in the lower groups are harmed academically and emotionally by grouping.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67315/2/10.1177_001698629203600204.pd

    Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction

    Get PDF
    We study dc-transport and magnetization dynamics in a junction of arbitrary transparency consisting of two spin-singlet superconducting leads connected via a single classical spin precessing at the frequency Ω\Omega. The presence of the spin in the junction provides different transmission amplitudes for spin-up and spin-down quasiparticles as well as a time-dependent spin-flip transmission term. For a phase biased junction, we show that a steady-state superconducting charge current flows through the junction and that an out-of-equilibrium circularly polarized spin current, of frequency Ω\Omega, is emitted in the leads. Detailed understanding of the charge and spin currents is obtained in the entire parameter range. In the adiabatic regime, Ω2Δ\hbar \Omega \ll 2\Delta where Δ\Delta is the superconducting gap, and for high transparencies of the junction, a strong suppression of the current takes place around \vp \approx 0 due to an abrupt change in the occupation of the Andreev bound-states. At higher values of the phase and/or precession frequency, extended (quasi-particle like) states compete with the bound-states in order to carry the current. Well below the superconducting transition, these results are shown to be weakly affected by the back-action of the spin current on the dynamics of the precessing spin. Indeed, we show that the Gilbert damping due to the quasi-particle spin current is strongly suppressed at low-temperatures, which goes along with a shift of the precession frequency due to the condensate. The results obtained may be of interest for on-going experiments in the field of molecular spintronics.Comment: 19 pages, 13 figures (v3) Minor modifications per referee's comments. No change in results. (v2) 2 authors added, 1 reference added (Ref. 25), no change in the text and result

    Josephson current in strongly correlated double quantum dots

    Get PDF
    We study the transport properties of a serial double quantum dot (DQD) coupled to two superconducting leads, focusing on the Josephson current through the DQD and the associated 0-π\pi transitions which result from the subtle interplay between the superconductivity, the Kondo physics, and the inter-dot superexchange interaction. We examine the competition between the superconductivity and the Kondo physics by tuning the relative strength Δ/TK\Delta/T_K of the superconducting gap Δ\Delta and the Kondo temperature TKT_K, for different strengths of the superexchange coupling determined by the interdot tunneling tt relative to the dot level broadening Γ\Gamma. We find strong renormalization of tt, a significant role of the superexchange coupling JJ, and a rich phase diagram of the 0 and π\pi-junction regimes. In particular, when both the superconductivity and the exchange interaction are in close competion with the Kondo physics (ΔJTK\Delta\sim J\sim T_K), there appears an island of π\pi'-phase at large values of the superconducting phase difference.Comment: 4 pages, 4 figure

    Rate equations for Coulomb blockade with ferromagnetic leads

    Full text link
    We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle. Interestingly, we find that the density-matrix description may be necessary even for metal particles with unpolarized leads if three or more single-electron levels contribute to the transport current and electron-electron interactions in the metal particle are described by the `universal interaction Hamiltonian'.Comment: 10 pages, 4 figures, REVTeX

    Temporal dynamics and fitness consequences of coalition formation in male primates

    Get PDF
    Coalition formation is one of the most striking forms of cooperation found in animals. Yet, there is substantial variation between taxa regarding the mechanisms by which coalitions can result in fitness consequences. Here, we investigate the influence of coalitions on dominance rank trajectories and subsequently on reproductive success in wild male crested macaques (Macaca nigra) at Tangkoko Nature Reserve (Sulawesi, Indonesia). We observed 128 coalition events involving 28 males and tested how a variety of coalition properties and factors related to the social environment influenced future male rank. We further used genetic paternity analysis of 19 infants conceived during the study to assess male reproductive success. Our results show that males participating in coalitions achieved higher-than-expected future ranks, while coalition targets had lower-than-expected future ranks. Additionally, all-up coalitions had stronger effects on rank than all-down and bridging coalitions, and these were modulated by the relative strength of coalition partners versus targets. Finally, higher ranking males were more likely to sire infants than lower ranking males. These results provide important insights regarding the mechanisms underlying coalition formation and support the idea that one major path by which coalitions can affect fitness is through influencing male dominance trajectories

    Josephson Current and Noise at a Superconductor-Quantum Spin Hall Insulator-Superconductor Junction

    Get PDF
    We study junctions between superconductors mediated by the edge states of a quantum spin Hall insulator. We show that such junctions exhibit a fractional Josephson effect, in which the current phase relation has a 4\pi, rather than a 2\pi periodicity. This effect is a consequence of the conservation of fermion parity - the number of electrons modulo 2 - in a superconducting junction, and is closely related to the Z_2 topological structure of the quantum spin Hall insulator. Inelastic processes, which violate the conservation of fermion parity, lead to telegraph noise in the equilibrium supercurrent. We predict that the low frequency noise due these processes diverges exponentially with temperature T as T -> 0. Possible experiments on HgCdTe quantum wells will be discussed.Comment: 4 pages, 2 figure

    Current-flux characteristics in mesoscopic nonsuperconducting rings

    Full text link
    We propose four different mechanisms responsible for paramagnetic or diamagnetic persistent currents in normal metal rings and determine the circumstances for change of the current from paramagnetic to diamagnetic ones and {\it vice versa}. It might qualitatively reproduce the experimental results of Bluhm et al. (Phys. Rev. Lett. 102, 136802 (2009)).Comment: 8 pages, 1 figur

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Aharonov-Bohm differential conductance modulation in defective metallic single-wall carbon nanotubes

    Full text link
    Using a perturbative approach, the effects of the energy gap induced by the Aharonov-Bohm (AB) flux on the transport properties of defective metallic single-walled carbon nanotubes (MSWCNTs) are investigated. The electronic waves scattered back and forth by a pair of impurities give rise to Fabry-Perot oscillations which constitutes a coherent backscattering interference pattern (CBSIP). It is shown that, the CBSIP is aperiodically modulated by applying a magnetic field parallel to the nanotube axis. In fact, the AB-flux brings this CBSIP under control by an additional phase shift. As a consequence, the extrema as well as zeros of the CBSIP are located at the irrational fractions of the quantity Φρ=Φ/Φ0\Phi_\rho={\Phi}/{\Phi_0}, where Φ\Phi is the flux piercing the nanotube cross section and Φ0=h/e\Phi_{0}=h/e is the magnetic quantum flux. Indeed, the spacing between two adjacent extrema in the magneto-differential conductance (MDC) profile is decreased with increasing the magnetic field. The faster and higher and slower and shorter variations is then obtained by metallic zigzag and armchair nanotubes, respectively. Such results propose that defective metallic nanotubes could be used as magneto-conductance switching devices based on the AB effect.Comment: 11 pages, 4 figure
    corecore