24,765 research outputs found
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Optical conductivity of nodal metals
Fermi liquid theory is remarkably successful in describing the transport and
optical properties of metals; at frequencies higher than the scattering rate,
the optical conductivity adopts the well-known power law behavior
. We have observed an unusual non-Fermi
liquid response in the ground
states of several cuprate and iron-based materials which undergo electronic or
magnetic phase transitions resulting in dramatically reduced or nodal Fermi
surfaces. The identification of an inverse (or fractional) power-law behavior
in the residual optical conductivity now permits the removal of this
contribution, revealing the direct transitions across the gap and allowing the
nature of the electron-boson coupling to be probed. The non-Fermi liquid
behavior in these systems may be the result of a common Fermi surface topology
of Dirac cone-like features in the electronic dispersion.Comment: 8 pages including supplemental informatio
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
Observation of an in-plane magnetic-field-driven phase transition in a quantum Hall system with SU(4) symmetry
In condensed matter physics, the study of electronic states with SU(N)
symmetry has attracted considerable and growing attention in recent years, as
systems with such a symmetry can often have a spontaneous symmetry-breaking
effect giving rise to a novel ground state. For example, pseudospin quantum
Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two
Landau levels close to degeneracy in a bilayer quantum Hall system. In the past
several years, the exploration of collective states in other multi-component
quantum Hall systems has emerged. Here we show the conventional pseudospin
quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly
into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field
in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor
around . Within a narrow tilting range angle of 0.5 degrees, the
activation energy increases as much as 12 K. While the origin of this puzzling
observation remains to be exploited, we discuss the possibility of a
long-sought pairing state of electrons with a four-fold degeneracy.Comment: 13 pages, 4 figure
Multispace and Multilevel BDDC
BDDC method is the most advanced method from the Balancing family of
iterative substructuring methods for the solution of large systems of linear
algebraic equations arising from discretization of elliptic boundary value
problems. In the case of many substructures, solving the coarse problem exactly
becomes a bottleneck. Since the coarse problem in BDDC has the same structure
as the original problem, it is straightforward to apply the BDDC method
recursively to solve the coarse problem only approximately. In this paper, we
formulate a new family of abstract Multispace BDDC methods and give condition
number bounds from the abstract additive Schwarz preconditioning theory. The
Multilevel BDDC is then treated as a special case of the Multispace BDDC and
abstract multilevel condition number bounds are given. The abstract bounds
yield polylogarithmic condition number bounds for an arbitrary fixed number of
levels and scalar elliptic problems discretized by finite elements in two and
three spatial dimensions. Numerical experiments confirm the theory.Comment: 26 pages, 3 figures, 2 tables, 20 references. Formal changes onl
Optical properties of the iron-arsenic superconductor BaFe1.85Co0.15As2
The transport and complex optical properties of the electron-doped
iron-arsenic superconductor BaFe1.85Co0.15As2 with Tc = 25 K have been examined
in the Fe-As planes above and below Tc. A Bloch-Gruneisen analysis of the
resistivity yields a weak electron-phonon coupling constant lambda_ph ~ 0.2.
The low-frequency optical response in the normal state appears to be dominated
by the electron pocket and may be described by a weakly-interacting Fermi
liquid with a Drude plasma frequency of omega_p,D ~ 7840 cm-1 (~ 0.972 eV) and
scattering rate 1/tau_D ~ 125 cm-1 (~ 15 meV) just above Tc. The
frequency-dependent scattering rate 1/tau(omega) has kinks at ~ 12 and 55 meV
that appear to be related to bosonic excitations. Below Tc the majority of the
superconducting plasma frequency originates from the electron pocket and is
estimated to be omega_p,S ~ 5200 cm-1 (lambda0 ~ 3000 Angstroms) for T << Tc,
indicating that less than half the free carriers in the normal state have
collapsed into the condensate, suggesting that this material is not in the
clean limit. Supporting this finding is the observation that this material
falls close to the universal scaling line for a BCS dirty-limit superconductor
in the weak-coupling limit. There are two energy scales for the
superconductivity in the optical conductivity and photo-induced reflectivity at
Delta1 ~ 3.1 +/- 0.2 meV and Delta2 ~ 7.4 +/- 0.3 meV. This corresponds to
either the gaping of the electron and hole pockets, respectively, or an
anisotropic s-wave gap on the electron pocket; both views are consistent with
the s+/- model.Comment: Revised version (expanded discussion, additional references): 11
pages, one table and 8 figure
Geometric model generation for CFD simulation of blood and air flows
A new adaptive algorithm is developed for the reconstruction of geometric models of carotid arteries and human airways from CT images. Based on the patient-specific geometric models, Computational Fluid Dynamics (CFD) models of patient's blood and air flows are constructed to calculate hemodynamic parameters and particle deposition patterns for patient-specific clinical applications
Modelling horizontal gas-liquid flow using averaged bubble number density approach
In this study, the internal phase distributions of gas-liquid bubbly flow in a horizontal pipe have been predicted using the population balance model based on Average Bubble Number Density approach. Four flow conditions with average gas volume fraction ranging from 4.4% to 20% have been investigated. Predicted local radial distributions of void fraction, interfacial area concentration and gas velocity have been validated against the experimental data. In general, satisfactory agreements between predicted results and measured values have been achieved. For high superficial gas velocity, it has been ascertained that peak local void fraction of 0.7 with interfacial area concentration of 800 m-1 can be encountered near the top wall of the pipe. Some discrepancies have nonetheless been found between the numerical and experimental results at certain locations of the pipe. The insufficient resolution of the turbulent model in fully accommodating the strong turbulence in the current pipe orientation and the inclusion of additional interfacial force such as the prevalent bouncing force among bubbles remain some of the outstanding challenging issues need to be addressed in order to improve the prediction of horizontal gas-liquid bubbly flow
- …
