59,891 research outputs found
Quantum Tunneling of Spin Particles in Periodic Potentials with Asymmetric Twin Barriers
The tunneling effect of a periodic potential with an asymmetric twin barrier
per period is calculated using the instanton method. The model is derived from
the Hamiltonian of a small ferromagnetic particle in an external magnetic field
using the spin-coherent-state path integral. The instantons in two neighbouring
barriers differ and lead to different level shifts . We derive with Bloch theory the energy spectrum which has
formally the structure of an energy band. The spectrum depends on both level
shifts. The removal of Kramer's degeneracy by an external magnetic field is
discussed. In addition we find a new kind of quenching of macroscopic quantum
coherence which is irrelevant to Kramer's degeneracy.Comment: 18 pages, LaTex, one figur
Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects
Starting from the Hamiltonian operator of the noncompensated two-sublattice
model of a small antiferromagnetic particle, we derive the effective Lagrangian
of a biaxial antiferromagnetic particle in an external magnetic field with the
help of spin-coherent-state path integrals. Two unequal level-shifts induced by
tunneling through two types of barriers are obtained using the instanton
method. The energy spectrum is found from Bloch theory regarding the periodic
potential as a superlattice. The external magnetic field indeed removes
Kramers' degeneracy, however a new quenching of the energy splitting depending
on the applied magnetic field is observed for both integer and half-integer
spins due to the quantum interference between transitions through two types of
barriers.Comment: 9 pages, Latex, 4 Postscript figure
Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles
A formula suitable for a quantitative evaluation of the tunneling effect in a
ferromagnetic particle is derived with the help of the instanton method. The
tunneling between n-th degenerate states of neighboring wells is dominated by a
periodic pseudoparticle configuration. The low-lying level-splitting previously
obtained with the LSZ method in field theory in which the tunneling is viewed
as the transition of n bosons induced by the usual (vacuum) instanton is
recovered. The observation made with our new result is that the tunneling
effect increases at excited states. The results should be useful in analyzing
results of experimental tests of macroscopic quantum coherence in ferromagnetic
particles.Comment: 18 pages, LaTex, 1 figur
Orbital elements of barium stars formed through a wind accretion scenario
Taking the total angular momentum conservation in place of the tangential
momentum conservation, and considering the square and higher power terms of
orbital eccentricity e, the changes of orbital elements of binaries are
calculated for wind accretion scenario. These new equations are used to
quantitatively explain the observed (e,logP) properties of normal G, K giants
and barium stars. Our results reflect the evolution from G, K giant binaries to
barium binaries, moreover, the barium stars with longer orbital periods P>1600
days may be formed by accreting part of the ejecta from the intrinsic AGB stars
through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for
publication in A &
Spin Hall effects for cold atoms in a light induced gauge potential
We propose an experimental scheme to observe spin Hall effects with cold
atoms in a light induced gauge potential. Under an appropriate configuration,
the cold atoms moving in a spatially varying laser field experience an
effective spin-dependent gauge potential. Through numerical simulation, we
demonstrate that such a gauge field leads to observable spin Hall currents
under realistic conditions. We also discuss the quantum spin Hall state in an
optical lattice.Comment: 4 pages; The published versio
Calibration of GRB Luminosity Relations with Cosmography
For the use of Gamma-Ray Bursts (GRBs) to probe cosmology in a
cosmology-independent way, a new method has been proposed to obtain luminosity
distances of GRBs by interpolating directly from the Hubble diagram of SNe Ia,
and then calibrating GRB relations at high redshift. In this paper, following
the basic assumption in the interpolation method that objects at the same
redshift should have the same luminosity distance, we propose another approach
to calibrate GRB luminosity relations with cosmographic fitting directly from
SN Ia data. In cosmography, there is a well-known fitting formula which can
reflect the Hubble relation between luminosity distance and redshift with
cosmographic parameters which can be fitted from observation data. Using the
Cosmographic fitting results from the Union set of SNe Ia, we calibrate five
GRB relations using GRB sample at and deduce distance moduli of GRBs
at by generalizing above calibrated relations at high
redshift. Finally, we constrain the dark energy parameterization models of the
Chevallier-Polarski-Linder (CPL) model, the Jassal-Bagla-Padmanabhan (JBP)
model and the Alam model with GRB data at high redshift, as well as with the
Cosmic Microwave Background radiation (CMB) and the baryonic acoustic
oscillation (BAO) observations, and we find the CDM model is
consistent with the current data in 1- confidence region.Comment: 15 pages, 4 figures, 2 tables; accepted for publication in IJMP
Quantum Phase Interference for Quantum Tunneling in Spin Systems
The point-particle-like Hamiltonian of a biaxial spin particle with external
magnetic field along the hard axis is obtained in terms of the potential field
description of spin systems with exact spin-coordinate correspondence. The
Zeeman energy term turns out to be an effective gauge potential which leads to
a nonintegrable pha se of the Euclidean Feynman propagator.
The phase interference between clockwise and anticlockwise under barrier
propagations is recognized explicitly as the Aharonov-Bohm effect. An
additional phase which is significant for quantum phase interference is
discovered with the quantum theory of spin systems besides the known phase
obtained with the semiclassical treatment of spin. We also show the energ y
dependence of the effect and obtain the tunneling splitting at excited states
with the help of periodic instantons.Comment: 19 pages, no figure, to appear in PR
Photochemical colour change for traditional watercolour pigments in low oxygen levels
An investigation for light exposure on pigments in low-oxygen environments (in the range 0â5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 â 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere). Storage in 5% oxygen is proposed for âanoxicâ display of paper-based artworks that might contain Prussian blue, to protect this material while reducing light-induced damage to other components of a watercolour, including organic colorants and the paper support
SIRIS: a high resolution scanning infrared camera for examining paintings
The new SIRIS (Scanning InfraRed Imaging System) camera developed at the National Gallery in London allows highresolution images of paintings to be made in the near infrared region (900â1700 nm). Images of 5000 Ă 5000 pixels are made by moving a 320 Ă 256 pixel InGaAs array across the focal plane of the camera using two orthogonal translation stages. The great advantages of this camera over scanning infrared devices are its relative portability and that image acquisition is comparatively rapid â a full 5000 Ă 5000 pixel image can be made in around 20 minutes. The paper describes the development of the mechanical, optical and electronic components of the camera, including the design of a new lens. The software routines used to control image capture and to assemble the individual 320 Ă 256 pixel frames into a seamless mosaic image are also mentioned. The optics of the SIRIS camera have been designed so that the camera can operate at a range of resolutions; from around 2.5 pixels per millimetre on large paintings of up to 2000 Ă 2000 mm to 10 pixels per millimetre on smaller paintings or details of paintings measuring 500 Ă 500 mm. The camera is primarily designed to examine underdrawings in paintings; preliminary results from test targets and paintings are presented and the quality of the images compared with those from other cameras currently used in this field
- âŠ