1,126 research outputs found
ERTS-1 MSS imagery: Its use in delineating soil associations and as a base map for publishing soils information
ERTS 1 imagery is a useful tool in the identification and refinement of soil association areas and an excellent base map upon which soil association information can be published. Prints of bands 5 and 7 were found to be most useful to help delineate major soil and vegetation areas. After delineating major soil areas, over 4800 land sale prices covering a period of 1967-72 were located in the soil areas and averaged. The soil association then were described as soil association value areas and published on a 1:1,000,000 scale ERTS mosaic of South Dakota constructed using negative prints of band 7. The map is intended for use by state and county revenue officers, by individual buyers and sellers of land and lending institutions, and as a reference map by those planning road routes and cable lines and pipelines
Remote sensing of physiographic soil units of Bennett County, South Dakota
A study was conducted in Bennett County, South Dakota, to establish a rangeland test site for evaluating the usefulness of ERTS data for mapping soil resources in rangeland areas. Photographic imagery obtained in October, 1970, was analyzed to determine which type of imagery is best for mapping drainage and land use patterns. Imagery of scales ranging from 1:1,000,000 to 1.20,000 was used to delineate soil-vegetative physiographic units. The photo characteristics used to define physiographic units were texture, drainage pattern, tone pattern, land use pattern and tone. These units will be used as test data for evaluating ERTS data. The physiographic units were categorized into a land classification system. The various categories which were delineated at the different scales of imagery were designed to be useful for different levels of land use planning. The land systems are adequate only for planning of large areas for general uses. The lowest category separated was the facet. The facets have a definite soil composition and represent different soil landscapes. These units are thought to be useful for providing natural resource information needed for local planning
Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota
The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery
Effective use of ERTS multisensor data in the Northern Great Plains
The author has identified the following significant results. ERTS imagery was used as a tool in the identification and refinement of soil association areas; to classify land use patterns between crop and fallow fields; to identify corn, soybeans, and oats; and to identify broad generalized range ecosystems. Various data handling techniques were developed and applied to accomplish these tasks. A map outlining soil associations and relative land values was completed on a base mosaic of ERTS imagery and is included as an appendix to the report
Evaluation of HCMM data for assessing soil moisture and water table depth
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables
The Homogeneity of Interstellar Oxygen in the Galactic Disk
We present an analysis of high resolution HST Space Telescope Imaging
Spectrograph (STIS) observations of O I 1356 and H I Lyman-alpha absorption in
36 sight lines that probe a variety of Galactic disk environments and include
paths that range over nearly 4 orders of magnitude in f(H_2), over 2 orders of
magnitude in mean sight line density, and that extend up to 6.5 kpc in length.
Consequently, we have undertaken the study of gas-phase O/H abundance ratio
homogeneity using the current sample and previously published Goddard
High-Resolution Spectrograph (GHRS) results. Two distinct trends are identified
in the 56 sight line sample: an apparent decrease in gas-phase oxygen abundance
with increasing mean sight line density and a gap between the mean O/H ratio
for sight lines shorter and longer than about 800 pc. The first effect is a
smooth transition between two depletion levels associated with large mean
density intervals; it is centered near a density of 1.5 cm^-3 and is similar to
trends evident in gas-phase abundances of other elements. Paths less dense than
the central value exhibit a mean O/H ratio of log_10 (O/H) = -3.41+/-0.01 (or
390+/-10 ppm), which is consistent with averages determined for several long,
low-density paths observed by STIS (Andre et al. 2003) and short low-density
paths observed by FUSE (Moos et al. 2002). Sight lines of higher mean density
exhibit an average O/H value of log_10 (O/H) = -3.55+/-0.02 (284+/-12 ppm). The
datapoints for low-density paths are scattered more widely than those for
denser sight lines, due to O/H ratios for paths shorter than 800 pc that are
generally about 0.10 dex lower than the values for longer ones.Comment: 33 pages, including 8 figures and 4 tables; accepted for publication
in ApJ, tentatively in Oct 200
Evaluation of HCMM data for assessing soil moisture and water table depth
Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)
A GLIMPSE into the Nature of Galactic Mid-IR Excesses
We investigate the nature of the mid-IR excess for 31 intermediate-mass stars
that exhibit an 8 micron excess in either the Galactic Legacy Infrared
Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high
resolution optical spectra to identify stars surrounded by warm circumstellar
dust. From these data we determine projected stellar rotational velocities and
estimate stellar effective temperatures for the sample. We estimate stellar
ages from these temperatures, parallactic distances, and evolutionary models.
Using MIPS [24] measurements and stellar parameters we determine the nature of
the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha
emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses
arise in circumstellar disks, we use the Halpha fluxes to model and estimate
the relative contributions of dust and free-free emission. Six stars exhibit
Halpha fluxes that imply free-free emission can plausibly explain the infrared
excess at [24]. These stars are candidate classical Be stars. Nine stars
exhibit Halpha emission, but their Halpha fluxes are insufficient to explain
the infrared excesses at [24], suggesting the presence of a circumstellar dust
component. After the removal of the free-free component in these sources, we
determine probable disk dust temperatures of Tdisk~300-800 K and fractional
infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be
pre-main-sequence stars with transitional disks undergoing disk clearing. Three
of the four sources showing Halpha absorption exhibit circumstellar disk
temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm
debris disk candidates. One of the four Halpha absorption sources has K-[24]>
3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap
The r-Process Enriched Low Metallicity Giant HD 115444
New high resolution, very high signal-to-noise spectra of ultra-metal-poor
(UMP) giant stars HD 115444 and HD 122563 have been gathered with the
High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7m
Telescope. With these spectra, line identification and model atmosphere
analyses have been conducted, emphasizing the neutron-capture elements. Twenty
elements with Z > 30 have been identified in the spectrum of HD 115444. This
star is known to have overabundances of the neutron-capture elements, but it
has lacked a detailed analysis necessary to compare with nucleosynthesis
predictions. The new study features a line-by-line differential abundance
comparison of HD 115444 with the bright, well-studied halo giant HD 122563. For
HD 115444, the overall metallicity is [Fe/H]~ -3.0. The abundances of the light
and iron-peak elements generally show the same pattern as other UMP stars (e.g.
overdeficiencies of manganese and chromium, overabundances of cobalt), but the
differential analysis indicates several nucleosynthesis signatures that are
unique to each star.Comment: To Appear in the Astrophysical Journa
- …
