25,830 research outputs found
3D-BEVIS: Bird's-Eye-View Instance Segmentation
Recent deep learning models achieve impressive results on 3D scene analysis
tasks by operating directly on unstructured point clouds. A lot of progress was
made in the field of object classification and semantic segmentation. However,
the task of instance segmentation is less explored. In this work, we present
3D-BEVIS, a deep learning framework for 3D semantic instance segmentation on
point clouds. Following the idea of previous proposal-free instance
segmentation approaches, our model learns a feature embedding and groups the
obtained feature space into semantic instances. Current point-based methods
scale linearly with the number of points by processing local sub-parts of a
scene individually. However, to perform instance segmentation by clustering,
globally consistent features are required. Therefore, we propose to combine
local point geometry with global context information from an intermediate
bird's-eye view representation.Comment: camera-ready version for GCPR '1
A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China
Cosmic rays interact with the Earth's atmosphere to produce C, which
can be absorbed by trees. Therefore, rapid increases of C in tree rings
can be used to probe previous cosmic-ray events. By this method, three C
rapidly increasing events have been found. Plausible causes of these events
include large solar proton events, supernovae or short gamma-ray bursts.
However, due to the lack of measurements of C by year, the occurrence
frequency of such C rapidly increasing events is poorly known. In
addition, rapid increases may be hidden in the IntCal13 data with five-year
resolution. Here we report the result of C measurements using an ancient
buried tree during the period between BC 3388 and 3358. We find a rapid
increase of about 9\textperthousand~ in the C content from BC 3372 to BC
3371. We suggest that this event could originate from a large solar proton
event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity
This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xyloseassimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 strains was determined by soxhlet extraction method. One strain (T216) was found to producelipids up to 36.6%, and it was identified as Rhodotorula glutinis. The optimal fermentation conditions were obtained as follows: glucose as carbon source 100 g/L; yeast extract and peptone as nitrogensources at, respectively, 8 and 3 g/L; initial pH of 5.0; inoculation volume of 5%; temperature at 28oC, shaking speed of 180 r/min, cultivated for 96 h. Under these conditions, R. glutinis accumulated lipids up to 49.25% on a cellular biomass basis and the corresponding lipid productivity reached 14.66 g/L. Experiments with a 5-L bioreactor under the optimal culture conditions showed that R. glutinisaccumulated lipids up to 60.69%, resulting in 23.41 g/L in lipid productivity. More encouraging results were observed for the lipid production with alternative carbon sources. Corn stalk and Populuseuramevicana leaves hydrolysate could be used to substitute glucose. Chemical analysis indicated that biodiesel obtained by transesterification possessed similar composition to that from vegetable oil, one of the widely used feedstock for biodiesel
A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20
The brightest giant flare from the soft -ray repeater (SGR) 1806-20
was detected on 2004 December 27. The isotropic-equivalent energy release of
this burst is at least one order of magnitude more energetic than those of the
two other SGR giant flares. Starting from about one week after the burst, a
very bright ( mJy), fading radio afterglow was detected. Follow-up
observations revealed the multi-frequency light curves of the afterglow and the
temporal evolution of the source size. Here we show that these observations can
be understood in a two-component explosion model. In this model, one component
is a relativistic collimated outflow responsible for the initial giant flare
and the early afterglow, and another component is a subrelativistic wider
outflow responsible for the late afterglow. We also discuss triggering
mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for
publication in ApJ Letter
An energetic blast wave from the December 27 giant flare of the soft gamma-ray repeater 1806-20
Recent follow-up observations of the December 27 giant flare of SGR 1806-20
have detected a multiple-frequency radio afterglow from 240 MHz to 8.46 GHz,
extending in time from a week to about a month after the flare. The angular
size of the source was also measured for the first time. Here we show that this
radio afterglow gives the first piece of clear evidence that an energetic blast
wave sweeps up its surrounding medium and produces a synchrotron afterglow, the
same mechanism as established for gamma-ray burst afterglows. The optical
afterglow is expected to be intrinsically as bright as at t\la
0.1 days after the flare, but very heavy extinction makes the detection
difficult because of the low galactic latitude of the source. Rapid infrared
follow-up observations to giant flares are therefore crucial for the
low-latitude SGRs, while for high-latitude SGRs (e.g. SGR 0526-66), rapid
follow-ups should result in identification of their possible optical
afterglows. Rapid multi-wavelength follow-ups will also provide more detailed
information of the early evolution of a fireball as well as its composition.Comment: Updated version, accepted for publication in ApJ Letter
LDA+Gutzwiller Method for Correlated Electron Systems
Combining the density functional theory (DFT) and the Gutzwiller variational
approach, a LDA+Gutzwiller method is developed to treat the correlated electron
systems from {\it ab-initio}. All variational parameters are self-consistently
determined from total energy minimization. The method is computationally
cheaper, yet the quasi-particle spectrum is well described through kinetic
energy renormalization. It can be applied equally to the systems from weakly
correlated metals to strongly correlated insulators. The calculated results for
SrVO, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.Comment: 4 pages, 3 figures, 1 tabl
Identification of the white dwarf companion to millisecond pulsar J2317+1439
We report identification of the optical counterpart to the companion of the
millisecond pulsar J2317+1439. At the timing position of the pulsar, we find an
object with , and . The
magnitudes and colors of the object are consistent with it being a white dwarf.
By comparing with white dwarf cooling models, we estimate that it has a mass of
M, an effective temperature of
K and a cooling age of Gyr. Combining our
results with published constraints on the orbital parameters obtained through
pulsar timing, we estimate the pulsar mass to be
M. Although the constraint on the pulsar mass is still weak, there is
a significant possibility that the pulsar could be more massive than two solar
mass.Comment: 7 pages, 6 figures, accepted for publication in Ap
- …