1,454 research outputs found
Investment Analysis of Alternative Dairy Systems under MILC
Three dairy systems, 120-cow grazing, 120-cow conventional, and 600-cow concentrated, were evaluated by internal rate of return (IRR) accounting for the Milk Income Loss Contract (MILC). With MILC, the grazing and conventional systems had higher IRRs. Without MILC, the 600-cow dairy had the highest IRR. Results were sensitive to assumptions.Concentrated feeding, conventional, grazing, internal rate of return, Livestock Production/Industries,
ECONOMIC IMPACTS ON THE ILLINOIS ECONOMY OF ALTERNATIVE DAIRY PRODUCTION SYSTEMS
Dairy in Illinois has declined in farm numbers, cows, and value of dairy product. Alternative dairy systems (intensive grazing, traditional, and a concentrated feeding system) were evaluated for their potential to sustain dairy in Illinois. The economic impact of each system on the Illinois economy was evaluated using IMPLAN.Livestock Production/Industries,
PUBLIC PERCEPTIONS REGARDING GROWTH OF THE DAIRY INDUSTRY IN ILLINOIS
Community opposition to dairies has altered location decisions by milk producers. Our objective was to identify residents' perceptions towards dairy by individual and community characteristics. A mail survey of residents of dairy counties and non-dairy counties was conducted. Dairy county residents were more willing to live close to a dairy.Livestock Production/Industries,
The impact of significant input of fine sediment on benthic fauna at tributary junctions: a case study of the Bermejo-Paraguay River confluence, Argentina
This study examines the morphological features, suspended sediment inputs and hydraulic conditions within a large river in association with ecological patterns before and after a tributary confluence. In order to examine these effects, the macroinvertebrate distributions from three reaches of the Paraguay and Bermejo Rivers (Paraguay-Argentina) are investigated. The Bermejo River is a tributary that supplies significant quantities of fine sediment to the Paraguay River, primarily in suspension. Two reaches were examined on the Paraguay River, upstream and downstream of the Bermejo River junction, with the third study reach located on the Bermejo River, upstream of the confluence with the Paraguay River. The results provide clear evidence that a significantly increased loading of fine sediment at a river confluence has effects on the distribution and potential movement of benthic invertebrates in the lotic environment by representing physical barriers at affected sites. These effects may be important at both local and regional scales, and such increases in suspended sediment (especially associated with anthropogenic change) may thus pose a major threat to ecosystem integrity that has been historically underestimated
Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels
We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set
Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations
Factorizable ribbon quantum groups in logarithmic conformal field theories
We review the properties of quantum groups occurring as Kazhdan--Lusztig dual
to logarithmic conformal field theory models. These quantum groups at even
roots of unity are not quasitriangular but are factorizable and have a ribbon
structure; the modular group representation on their center coincides with the
representation on generalized characters of the chiral algebra in logarithmic
conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition
HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies
HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base
Gravitational clustering of relic neutrinos and implications for their detection
We study the gravitational clustering of big bang relic neutrinos onto
existing cold dark matter (CDM) and baryonic structures within the flat
CDM model, using both numerical simulations and a semi-analytical
linear technique, with the aim of understanding the neutrinos' clustering
properties for direct detection purposes. In a comparative analysis, we find
that the linear technique systematically underestimates the amount of
clustering for a wide range of CDM halo and neutrino masses. This invalidates
earlier claims of the technique's applicability. We then compute the exact
phase space distribution of relic neutrinos in our neighbourhood at Earth, and
estimate the large scale neutrino density contrasts within the local
Greisen--Zatsepin--Kuzmin zone. With these findings, we discuss the
implications of gravitational neutrino clustering for scattering-based
detection methods, ranging from flux detection via Cavendish-type torsion
balances, to target detection using accelerator beams and cosmic rays. For
emission spectroscopy via resonant annihilation of extremely energetic cosmic
neutrinos on the relic neutrino background, we give new estimates for the
expected enhancement in the event rates in the direction of the Virgo cluster.Comment: 38 pages, 8 embedded figures, iopart.cls; v2: references added, minor
changes in text, to appear in JCA
- …
