30,264 research outputs found
Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis and comparisons
Recently, the advantages of the discrete cosine transform (DCT) based orthogonal frequency-division multiplexing (OFDM) have come to the light. We thus consider DCT- OFDM with non-circular transmission (our results cover circular transmission as well) and present two blind joint maximum- likelihood frequency offset and phase offset estimators. Both our theoretical analysis and numerical comparisons reveal new advantages of DCT-OFDM over the traditional discrete Fourier transform (DFT) based OFDM. These advantages, as well as those already uncovered in the early works on DCT-OFDM, support the belief that DCT-OFDM is a promising multi-carrier modulation scheme
Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head
Sensitive detection of weak magnetic moments is an essential capability in
many areas of nanoscale science and technology, including nanomagnetism,
quantum readout of spins, and nanoscale magnetic resonance imaging. Here, we
show that the write head of a commercial hard drive may enable significant
advances in nanoscale spin detection. By approaching a sharp diamond tip to
within 5 nm from the pole and measuring the induced diamagnetic moment with a
nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032
Bohr magnetons per root Hz, equivalent to 21 proton magnetic moments. The high
sensitivity is enabled in part by the pole's strong magnetic gradient of up to
28 million Tesla per meter and in part by the absence of non-contact friction
due to the extremely flat writer surface. In addition, we demonstrate
quantitative imaging of the pole field with about 10 nm spatial resolution. We
foresee diverse applications for write heads in experimental condensed matter
physics, especially in spintronics, ultrafast spin manipulation, and mesoscopic
physics.Comment: 21 pages, 6 figure
Structural Characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded Forms of the argE-encoded \u3cem\u3eN\u3c/em\u3e-acetyl-L-ornithine Deacetylase from \u3cem\u3eEscherichia coli\u3c/em\u3e
The Zn, Co, and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra of the N-acetyl-l-ornithine deacetylase (ArgE) from Escherichia coli, loaded with one or two equivalents of divalent metal ions (i.e., [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)], [Co(II)Co(II)(ArgE)], [Mn(II)_(ArgE)], and [Mn(II)Mn(II)(ArgE)]), were recorded. The Fourier transformed data (FT) for [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)] and [Co(II)Co(II)(ArgE)] are dominated by a peak at 2.05 Å, that can be fit assuming five or six light atom (N,O) scatterers. Inclusion of multiple-scattering contributions from the outer-shell atoms of a histidine-imidazole ring resulted in reasonable Debye–Waller factors for these contributions and a slight reduction in the goodness-of-fit value (f′). Furthermore, the data best fit a model that included a M–M vector at 3.3 and 3.4 Å for Zn(II) and Co(II), respectively, suggesting the formation of a dinuclear site. Multiple scattering contributions from the outer-shell atoms of a histidine-imidazole rings are observed at ~ 3 and 4 Å for Zn(II)- and Co(II)-loaded ArgE suggesting at least one histidine ligand at each metal binding site. Likewise, EXAFS data for Mn(II)-loaded ArgE are dominated by a peak at 2.19 Å that was best fit assuming six light atom (N,O) scatterers. Due to poor signal to noise ratios for the Mn EXAFS spectra, no Mn–Mn vector could be modeled. Peak intensities for [M(II)_(ArgE)] vs. [M(II)M(II)(ArgE)] suggest the Zn(II), Co(II), and Mn(II) bind to ArgE in a cooperative manner. Since no structural data has been reported for any ArgE enzyme, the EXAFS data reported herein represent the first structural glimpse for ArgE enzymes. These data also provide a structural foundation for the future design of small molecules that function as inhibitors of ArgE and may potentially function as a new class of antibiotics
Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach
A major quest in cosmology is the understanding of the nature of dark energy.
It is now well known that a combination of cosmological probes is required to
break the underlying degeneracies on cosmological parameters. In this paper, we
present a method, based on a frequentist approach, to combine probes without
any prior constraints, taking full account of the correlations in the
parameters. As an application, a combination of current SNIa and CMB data with
an evolving dark energy component is first compared to other analyses. We
emphasise the consequences of the implementation of the dark energy
perturbations on the result for a time varying equation of state. The impact of
future weak lensing surveys on the measurement of dark energy evolution is then
studied in combination with future measurements of the cosmic microwave
background and type Ia supernovae. We present the combined results for future
mid-term and long-term surveys and confirm that the combination with weak
lensing is very powerful in breaking parameter degeneracies. A second
generation of experiment is however required to achieve a 0.1 error on the
parameters describing the evolution of dark energy.Comment: Submitted to Astronomy & Astrophysics 14 pages, 8 figure
Doubly heavy baryon production at polarized photon collider
We study the inclusive production of doubly heavy baryon at
polarized photon collider. Our results show that proper choice of the initial
beam polarizations may increase the production rate of approximately
10%.Comment: 9 pages, 5 figure
Small ball probability, Inverse theorems, and applications
Let be a real random variable with mean zero and variance one and
be a multi-set in . The random sum
where are iid copies of
is of fundamental importance in probability and its applications.
We discuss the small ball problem, the aim of which is to estimate the
maximum probability that belongs to a ball with given small radius,
following the discovery made by Littlewood-Offord and Erdos almost 70 years
ago. We will mainly focus on recent developments that characterize the
structure of those sets where the small ball probability is relatively
large. Applications of these results include full solutions or significant
progresses of many open problems in different areas.Comment: 47 page
Geometric vs. Dynamical Gates in Quantum Computing Implementations Using Zeeman and Heisenberg Hamiltonians
Quantum computing in terms of geometric phases, i.e. Berry or
Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its
implementation based on Zeeman coupling with a rotating field and isotropic
Heisenberg interaction, which describe NMR and can also be realized in quantum
dots and cold atoms. Using a novel physical representation of the qubit basis
states, we construct and Hadamard gates based on Berry and
Aharonov-Anandan phases. For two interacting qubits in a rotating field, we
find that it is always impossible to construct a two-qubit gate based on Berry
phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the
two qubits are equal. In implementing a universal set of quantum gates, one may
combine geometric and Hadamard gates and dynamical
gate.Comment: published version, 5 page
Synthesis and structural characterization of 2Dioxane.2H2O.CuCl2: metal-organic compound with Heisenberg antiferromagnetic S=1/2 chains
A novel organometallic compound 2Dioxane.CuCl2.2H2O has been synthesized and
structurally characterized by X-ray crystallography. Magnetic susceptibility
and zero-field inelastic neutron scattering have also been used to study its
magnetic properties. It turns out that this material is a weakly coupled
one-dimensional S=1/2 Heisenberg antiferromagnetic chain system with chain
direction along the crystallographic c axis and the nearest-neighbor
intra-chain exchange constant J=0.85(4) meV. The next-nearest-neighbor
inter-chain exchange constant J' is also estimated to be 0.05 meV. The observed
magnetic excitation spectrum from inelastic neutron scattering is in excellent
agreement with numerical calculations based on the Muller ansatz.Comment: 4 pages; 5 figure
- …