89,174 research outputs found
The asymmetric structure of the Galactic halo
Using the stellar photometry catalogue based on the latest data release (DR4)
of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using
star counts is carried out for selected areas of the sky. The sample areas are
selected along a circle at a Galactic latitude of +60, and 10 strips of
high Galactic latitude along different longitudes. Direct statistics of the
data show that the surface densities of from to
are systematically higher than those of from
to , defining a region of overdensity (in the direction of Virgo)
and another one of underdensity (in the direction of Ursa Major) with respect
to an axisymmetric model. It is shown by comparing the results from star counts
in the colour that the density deviations are due to an asymmetry of
the stellar density in the halo. Theoretical models for the surface density
profile are built and star counts are performed using a triaxial halo of which
the parameters are constrained by observational data. Two possible reasons for
the asymmetric structure are discussed.Comment: 17 pages, 7 figures, 5 tables, MNRAS accepte
Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot
Giant optical Faraday rotation (GFR) and giant optical circular birefringence
(GCB) induced by a single quantum-dot spin in an optical microcavity can be
regarded as linear effects in the weak-excitation approximation if the input
field lies in the low-power limit [Hu et al, Phys.Rev. B {\bf 78}, 085307(2008)
and ibid {\bf 80}, 205326(2009)]. In this work, we investigate the transition
from the weak-excitation approximation moving into the saturation regime
comparing a semiclassical approximation with the numerical results from a
quantum optics toolbox [S.M. Tan, J. Opt. B {\bf 1}, 424 (1999)]. We find that
the GFR and GCB around the cavity resonance in the strong coupling regime are
input-field independent at intermediate powers and can be well described by the
semiclassical approximation. Those associated with the dressed state resonances
in the strong coupling regime or merging with the cavity resonance in the
Purcell regime are sensitive to input field at intermediate powers, and cannot
be well described by the semiclassical approximation due to the quantum dot
saturation. As the GFR and GCB around the cavity resonance are relatively
immune to the saturation effects, the rapid read out of single electron spins
can be carried out with coherent state and other statistically fluctuating
light fields. This also shows that high speed quantum entangling gates, robust
against input power variations, can be built exploiting these linear effects.Comment: Section IV has been added to show the linear GFR/GCB is not affected
by high-order dressed state resonances in reflection/transmission spectra. 11
pages, 9 figure
Some Like It Hot, Some Like It Warm: Phenotyping To Explore Thermotolerance Diversity
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This ‘thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: (1) the heat stress regime used, (2) the developmental stage of the plants being studied, and (3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance
Series of broad resonances in atomic three-body systems
We re-examine the series of resonances found earlier in atomic three-body
systems by solving the Faddeev-Merkuriev integral equations. These resonances
are rather broad and line-up at each threshold with gradually increasing gaps,
the same way for all thresholds and irrespective of the spatial symmetry. We
relate these resonances to the Gailitis mechanism, which is a consequence of
the polarization potential.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with
arXiv:0810.303
Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings
This paper compares 22 different similarity coefficients when they are used for searching databases of 2D fragment bit-strings. Experiments with the National Cancer Institute's AIDS and IDAlert databases show that the coefficients fall into several well-marked clusters, in which the members of a cluster will produce comparable rankings of a set of molecules. These clusters provide a basis for selecting combinations of coefficients for use in data fusion experiments. The results of these experiments provide a simple way of increasing the effectiveness of fragment-based similarity searching systems
Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings
This paper compares 22 different similarity coefficients when they are used for searching databases of 2D fragment bit-strings. Experiments with the National Cancer Institute's AIDS and IDAlert databases show that the coefficients fall into several well-marked clusters, in which the members of a cluster will produce comparable rankings of a set of molecules. These clusters provide a basis for selecting combinations of coefficients for use in data fusion experiments. The results of these experiments provide a simple way of increasing the effectiveness of fragment-based similarity searching systems
- …