1,886 research outputs found

    Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    Full text link
    Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path towards the definition of missions able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both ESA and NASA have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on exozodiacal dust clouds surrounding the target stars. In this paper, we assess the impact of exozodiacal dust clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. For the nominal mission architecture with 2-m aperture telescopes, we found that point-symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust density for planet detection goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. The upper limits on the tolerable exozodiacal dust density derived in this study must be considered as rather pessimistic, but still give a realistic estimation of the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions.Comment: 17 pages, accepted for publication in A&

    Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data

    Full text link
    Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.Comment: 84 pages, 8 Figures, 14 Tables; To appear in the Astrophysical Journal Supplemen

    Improved V II log(gfgf) Values, Hyperfine Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937

    Get PDF
    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Use of two spectrometers, independent radiometric calibration methods, and independent data analysis routines enables a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log {\epsilon}(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = -2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.Comment: 32 pages, 7 tables (3 machine-readable), 8 figures; accepted for publication in ApJ
    • …
    corecore