214 research outputs found

    Effectiveness of observation-domain sidereal filtering for GPS precise point positioning

    Get PDF
    Sidereal filtering is a technique used to reduce errors caused by multipath in the positioning of static receivers via the Global Positioning System (GPS). It relies upon the receiver and its surrounding environment remaining static from one day to the next and takes advantage of the approximately sidereal repeat time of the GPS constellation geometry. The repeating multipath error can thus be identified, usually in the position domain, and largely removed from the following day. We describe an observation-domain sidereal filter algorithm that operates on undifferenced ionospheric-free GPS carrier phase measurements to reduce errors caused by multipath. It is applied in the context of high-rate (1 Hz) precise point positioning of a static receiver. An observation-domain sidereal filter (ODSF) is able to account for the slightly different repeat times of each GPS satellite, unlike a position-domain sidereal filter (PDSF), and can hence be more effective at reducing high-frequency multipath error. Using 8-h long datasets of GPS measurements from two different receivers with different antenna types and contrasting environments, the ODSF algorithm is shown overall to yield a position time series 5–10 % more stable, in terms of Allan deviation, than a PDSF over nearly all time intervals below about 200 s in length. This may be particularly useful for earthquake and tsunami early warning systems where the accurate measurement of small displacements of the ground over the period of just a few minutes is crucial. However, the sidereal filters are also applied to a third dataset during which two short episodes of particularly high-frequency multipath error were identified. These two periods are analyzed in detail and illustrate the limitations of using sidereal filters with important implications for other methods of correcting for multipath at the observation level

    Global Ocean Tide Models: Assessment and Use within a Surface Model of Lowest Astronomical Tide

    Get PDF
    The UK Hydrographic Office (UKHO)-sponsored Vertical Offshore Reference Frames (VORF) project aims to develop tidal level transformation models that are referenced to the GRS80 ellipsoid and thus compatible with GNSS positioning; in particular, heighting. Benefits include increasing the efficiency of hydrographic surveying, providing a stable consistent reference frame and enabling integration with land data in the coastal zone. Seven contemporary global ocean tide models are used to derive Lowest Astronomical Tide (LAT) surfaces which are each assessed by comparison with LAT values from the 7,389-strong UKHO tide gauge database, with the results correlated with distance from land. The proportion of truly offshore and pelagic gauges is relatively limited; however, the transition zone whereby the global ocean tide models commence to deteriorate in accuracy is evident at approximately 30km from the coast. The DTU10 model was selected as the strongest candidate overall. Subsequently, a thin plate spline method is used with the tide gauge dataset to enhance the DTU10 LAT surface in the coastal zone, creating a high resolution global LAT surface with respect to mean sea level. It is seen by cross-validation that the method may be used to predict LAT in near-shore locations with a standard error of 0.23 m

    Probabilistic movement modeling for intention inference in human-robot interaction.

    No full text
    Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes ’ theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.

    A Bayesian Nonparametric Approach to Modeling Motion Patterns

    Get PDF
    The most difficult—and often most essential— aspect of many interception and tracking tasks is constructing motion models of the targets to be found. Experts can often provide only partial information, and fitting parameters for complex motion patterns can require large amounts of training data. Specifying how to parameterize complex motion patterns is in itself a difficult task. In contrast, nonparametric models are very flexible and generalize well with relatively little training data. We propose modeling target motion patterns as a mixture of Gaussian processes (GP) with a Dirichlet process (DP) prior over mixture weights. The GP provides a flexible representation for each individual motion pattern, while the DP assigns observed trajectories to particular motion patterns. Both automatically adjust the complexity of the motion model based on the available data. Our approach outperforms several parametric models on a helicopter-based car-tracking task on data collected from the greater Boston area

    Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments

    Get PDF
    Global navigation satellite system (GNSS) ambiguity resolution is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of improving significantly on the precision of the remaining GNSS model parameters. In this contribution, we consider the problem of ambiguity resolution for GNSS attitude determination. We analyse the performance of a new ambiguity resolution method for GNSS attitude determination. As it will be shown, this method provides a numerically efficient, highly reliable and robust solution of the nonlinearly constrained integer least-squares GNSS compass estimators. The analyses have been done by means of a unique set of extensive experimental tests, using simulated as well as actual GNSS data and using receivers of different manufacturers and type as well as different platforms. The executed field tests cover two static land experiments, one in the Netherlands and one in Australia, and two dynamic experiments, a low-dynamics vessel experiment and high-dynamics aircraft experiment. In our analyses, we focus on stand-alone, unaided, single-frequency, single epoch attitude determination, as this is the most challenging case of GNSS compass processing

    The impact of bisphosphonates on the osteoblast proliferation and Collagen gene expression in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are known to be associated with osteonecrosis of the jaw (BONJ).</p> <p>The objective of this study was to evaluate the effect of bisphosphonates on osteoblast proliferation by cell count and gene expression analysis of cyclin D1 <it>in vitro</it>. Furthermore, the gene expression of the extracellular matrix protein collagen type I was evaluated. Nitrogen-containing and non-nitrogen-containing bisphosphonates have been compared on gene expression levels.</p> <p>Methods</p> <p>Human osteoblast obtained from hip bone were stimulated with zoledronate, ibandronate and clodronate at concentrations of 5 × 10<sup>-5</sup>M over the experimental periods of 1, 2, 5, 10 and 14 days. At each point in time, the cells were dissolved, the mRNA extracted, and the gene expression level of cyclin D1 and collagen type I were quantified by Real-Time RT-PCR. The gene expression was compared to an unstimulated osteoblast cell culture for control.</p> <p>Results</p> <p>The proliferation appeared to have been influenced only to a small degree by bisphosphonates. Zolendronate led to a lower cyclin D1 gene expression after 10 days. The collagen gene expression was enhanced by nitrogen containing bisphosphonates, decreased however after day 10. The non-nitrogen-containing bisphosphonate clodronate, however, did not significantly influence cyclin D1 and collagen gene expression.</p> <p>Conclusions</p> <p>The above data suggest a limited influence of bisphosphonates on osteoblast proliferation, except for zoledronate. The extracellular matrix production seems to be initially advanced and inhibited after 10 days. Interestingly, clodronate has little influence on osteoblast proliferation and extracellular matrix production in terms of cyclin D1 and collagen gene expression.</p

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network

    Get PDF
    This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to "re-construct" observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia
    • …
    corecore