124 research outputs found

    Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach

    Full text link
    The relativistic optical model potential (OMP) for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-B One-Boson- Exchange potential for the bare nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent nucleon self-energies in nuclear medium are derived from the DBHF approach based on the projection techniques within the subtracted T -matrix representation. The Dirac potentials as well as the corresponding Schrodinger equivalent potentials are evaluated. An improved local density approximation is employed in this analysis, where a range parameter is included to account for a finite-range correction of the nucleon-nucleon interaction. As an example the total cross sections, differential elastic scattering cross sections, analyzing powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated. The results derived from this microscopic approach of the OMP are compared to the experimental data, as well as the results obtained with a phenomenological OMP. A good agreement between the theoretical results and the measurements can be achieved for all incident energies using a constant value for the range parameter.Comment: 10 pages, 16 figure

    Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins

    Get PDF
    Elicitation of antibodies with potent and broad neutralizing activity against HIV by immunization remains a challenge. Several monoclonal antibodies (mAbs) isolated from humans with HIV-1 infection exhibit such activity but vaccine immunogens based on structures containing their epitopes have not been successful for their elicitation. All known broadly neutralizing mAbs (bnmAbs) are immunoglobulin (Ig) Gs (IgGs) and highly somatically hypermutated which could impede their elicitation. Ig Ms (IgMs) are on average significantly less divergent from germline antibodies and are relevant for the development of vaccine immunogens but are underexplored compared to IgGs. Here we describe the identification and characterization of several human IgM-derived mAbs against HIV-1 which were selected from a large phage-displayed naive human antibody library constructed from blood, lymph nodes and spleens of 59 healthy donors. These antibodies bound with high affinity to recombinant envelope glycoproteins (gp140s, Envs) of HIV-1 isolates from different clades. They enhanced or did not neutralize infection by some of the HIV-1 primary isolates using CCR5 as a coreceptor but neutralized all CXCR4 isolates tested although weakly. One of these antibodies with relatively low degree of somatic hypermutation was more extensively characterized. It bound to a highly conserved region partially overlapping with the coreceptor binding site and close to but not overlapping with the CD4 binding site. These results suggest the existence of conserved structures that could direct the immune response to non-neutralizing or even enhancing antibodies which may represent a strategy used by the virus to escape neutralizing immune responses. Further studies will show whether such a strategy plays a role in HIV infection of humans, how important that role could be, and what the mechanisms of infection enhancement are. The newly identified mAbs could be used as reagents to further characterize conserved non-neutralizing, weakly neutralizing or enhancing epitopes and modify or remove them from candidate vaccine immunogens

    A Neutralizing Human Monoclonal Antibody Protects against Lethal Disease in a New Ferret Model of Acute Nipah Virus Infection

    Get PDF
    Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody

    Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations

    Get PDF
    By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi approaches to Relativistic Mean Field Theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface and Coulomb terms, is examined by comparing it with self-consistent results of the finite nuclei incompressibility for some currently used non-linear sigma-omega parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten

    Hypoglycemia and Death in Mice Following Experimental Exposure to an Extract of Trogia venenata Mushrooms

    Get PDF
    BACKGROUND: Clusters of sudden unexplained death (SUD) in Yunnan Province, China, have been linked to eating Trogia venenata mushrooms. We evaluated the toxic effect of this mushroom on mice. METHODS: We prepared extracts of fresh T. venenata and Laccaria vinaceoavellanea mushrooms collected from the environs of a village that had SUD. We randomly allocated mice into treatment groups and administered mushroom extracts at doses ranging from 500 to 3500 mg/kg and water (control) via a gavage needle. We observed mice for mortality for 7 days after a 3500 mg/kg dose and for 24 hours after doses from 500 to 3000 mg/kg. We determined biochemical markers from serum two hours after a 2000 mg/kg dose. RESULTS: Ten mice fed T. venenata extract (3500 mg/kg) died by five hours whereas all control mice (L. vinaceoavellanea extract and water) survived the seven-day observation period. All mice died by five hours after exposure to single doses of T. venenata extract ranging from 1500 to 3000 mg/kg, while the four mice exposed to a 500 mg/kg dose all survived. Mice fed 2000 mg/kg of T. venenata extract developed profound hypoglycemia (median= 0.66 mmol/L) two hours after exposure. DISCUSSION: Hypoglycemia and death within hours of exposure, a pattern unique among mushroom toxicity, characterize T. venenata poisoning

    Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    Get PDF
    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines
    corecore