14 research outputs found

    Factors associated with shunt dynamic in patients with cryptogenic stroke and patent foramen ovale: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As previously reported there is evidence for a reduction in right to left shunt (RLS) in stroke patients with patent foramen ovale (PFO). This occurs predominantly in patients with cryptogenic stroke (CS). We therefore analysed factors associated with a shunt reduction on follow-up in stroke patients suffering of CS.</p> <p>Methods</p> <p>On index event PFO and RLS were proven by transesophageal echocardiography and contrast-enhanced transcranial Doppler-sonography (ce-TCD). Silent PE was proved by ventilation perfusion scintigraphy (V/Q) within the stroke work-up on index event; all scans were re-evaluated in a blinded manner by two experts. The RLS was re-assessed on follow-up by ce-TCD. A reduction in shunt volume was defined as a difference of ≥20 microembolic signals (MES) or the lack of evidence of RLS on follow-up. For subsequent analyses patients with CS were considered; parameters such as deep vein thrombosis (DVT) and silent pulmonary embolism (PE) were analysed.</p> <p>Results</p> <p>In 39 PFO patients suffering of a CS the RLS was re-assessed on follow-up. In all patients (n = 39) with CS a V/Q was performed; the median age was 40 years, 24 (61.5%) patients were female. In 27 patients a reduction in RLS was evident. Silent PE was evident in 18/39 patients (46.2%). Factors such as atrial septum aneurysm, DVT or even silent PE were not associated with RLS dynamics. A greater time delay from index event to follow-up assessment was associated with a decrease in shunt volume (median 12 vs. 6 months, <it>p </it>= 0.013).</p> <p>Conclusions</p> <p>In patients with CS a reduction in RLS is not associated with the presence of a venous embolic event such as DVT or silent PE. A greater time delay between the initial and the follow-up investigation increases the likelihood for the detection of a reduction in RLS.</p

    Decrease in shunt volume in patients with cryptogenic stroke and patent foramen ovale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with patent foramen ovale (PFO) there is evidence supporting the hypothesis of a change in right-to-left shunt (RLS) over time. Proven, this could have implications for the care of patients with PFO and a history of stroke. The following study addressed this hypothesis in a cohort of patients with stroke and PFO.</p> <p>Methods</p> <p>The RLS volume assessed during hospitalisation for stroke (index event/T0) was compared with the RLS volume on follow-up (T1) (median time between T0 and T1 was 10 months). In 102 patients with a history of stroke and PFO the RLS volume was re-assessed on follow-up using contrast-enhanced transcranial Doppler/duplex (ce-TCD) ultrasound. A change in RLS volume was defined as a difference of ≥20 microembolic signals (MES) or no evidence of RLS during ce-TCD ultrasound on follow-up.</p> <p>Results</p> <p>There was evidence of a marked reduction in RLS volume in 31/102 patients; in 14/31 patients a PFO was no longer detectable. An index event classified as cryptogenic stroke (P < 0.001; OD = 39.2, 95% confidence interval 6.0 to 258.2) and the time interval to the follow-up visit (P = 0.03) were independently associated with a change in RLS volume over time.</p> <p>Conclusions</p> <p>RLS volume across a PFO decreases over time, especially in patients with cryptogenic stroke. These may determine the development of new strategies for the management in the secondary stroke prevention.</p

    Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy

    Get PDF
    Background: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. Methods: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. Results: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. Conclusions: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors

    Functional differences between E. Coli and eskape pathogen groes/groel

    Get PDF
    As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chap-eronins. Herein we report our initial efforts to characterize the GroES/GroEL chapero-nins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and-null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/ GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable orga-nism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) orbothE. coli GroES and GroEL (E. faecium). In addition, GroES/ GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all condi-tions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, butdisplayedan elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity. IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coli groESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to de-velop chaperonin-targeted antibiotics. © 2021 Sivinski et al.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics

    No full text
    Here we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (T-g) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC71BM (phenyl C-71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the T-g (sub-T-g and post-T-g), both in the active layer drying stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. In addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously-been observed, that of PC71BM nano-pathway formation between dispersed PC71BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction

    Nano-pathways: bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics

    Get PDF
    Here we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (T) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PCBM (phenyl C butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the T (sub-T and post-T), both in the active layer drying stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. In addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously been observed, that of PCBM nano-pathway formation between dispersed PCBM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction

    Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy

    Get PDF
    Background: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. Methods: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. Results: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. Conclusions: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors
    corecore