29 research outputs found

    Analysis of the Effect of a Gyrotropic Anisotropy on the Phase Constant and Characteristic Impedance of a Shielded Microstrip Line

    Get PDF
    In this work, we present an analytical modeling of a highly complex medium-based shielded microstrip line. The study aims at a numerical evaluation of the characteristic impedance and the dispersion characteristics of the dominant hybrid mode in the microstrip line printed on an anisotropic medium. The newly considered complex anisotropy has a full 3×3 tensor form of permittivity and permeability. The study is based on the derivation of the Green's functions of the general complex-medium-based structure in the Fourier domain. The spectral Method of Moments (MoM) and the Galerkin's procedure are combined to solve the resulting homogeneous system of equations. The effect of the gyrotropic anisotropy on the phase constant and the characteristic impedance is particularly investigated. Original and interesting numerical results are obtained and discussed. Our results are found to be in good agreement with available isotropic case data reported in literature

    Analysis of the Combinatory Effect of Uniaxial Electrical and Magnetic Anisotropy on the Input Impedance and Mutual Coupling of a Printed Dipole Antenna

    Get PDF
    The main objective of this work is to investigate the combinatory effects of both uniaxial magnetic and electrical anisotropies on the input impedance, resonant length and the mutual coupling between two dipoles printed on an anisotropic grounded substrate. Three different configurations: broadside, collinear and echelon are considered for the coupling investigation. The study is based on the numerical solution of the integral equation using the method of moments through the mathematical derivation of the appropriate Green's functions in the spectral domain. In order to validate the computing method and evaluated Matlab? calculation code, numerical results are compared with available literature treating particular cases of uniaxial electrical anisotropy; good agreements are observed. New results of dipole structures printed on uniaxial magnetic anisotropic substrates are presented and discussed, with the investigation of the combined electrical and magnetic anisotropies effect on the input impedance and mutual coupling for different geometrical configurations. The combined uniaxial (electric and magnetic) anisotropies provide additional degrees of freedom for the input impedance control and coupling reduction

    Analysis of Chiral and Achiral Medium Based Coplanar Waveguide Using Improved Full Generalized Exponential Matrix Technique

    Get PDF
    In this work, an analytical study of the electromagnetic propagation in a complex medium-based suspended three-layer coplanar waveguide (CPW) is carried out. The study aims at a numerical calculation of the dominant hybrid mode complex propagation constant in the CPW printed on a bianisotropic substrate. The herein considered bianisotropy is characterized by full 3×3 tensors of permittivity, permeability and magnetoelectric parameters. The study is based on the numerical derivation of the Green's functions of such a complex medium in the spectral domain. The study is carried out using the Full Generalized Exponential Matrix Technique based on matrix-shaped compact mathematical formulations. The Spectral Method of Moments (SMoM) and the Galerkin's procedure are used to solve the resulting homogeneous system of equations. The effect of the chiral and achiral bianisotropy on the complex propagation constant is particularly investigated. Good agreements with available data for an anisotropic-medium-based suspended CPW structure are achieved. Various cases of chiral and achiral bianisotropy have been investigated, and particularly, the effect on the dispersion characteristics is presented and compared with cases of isotropic and bianisotropic Tellegen media

    A wide-angle pattern diversity antenna system for mmWave 5G mobile terminals

    Get PDF
    YesA shared ground shared radiator with wide angular coverage for mmWave 5G smartphones is proposed in this paper. A four-element corporate-fed array with conventional impedance matched power divider is designed. Stepped impedance transformers are integrated with the corner most elements to achieve pattern diversity with wide angular coverage without signifi-cant compromise in gain. The proposed three-port shared radiator conformal commercial an-tenna could be easily integrated with commercial mmWave 5G smartphones. All the three ports’ excitations operate in the 28 GHz band. Radiation pattern bandwidth of the multi-port system is high. The gain variation is from 6 to11 dBi amongst the ports and across the operating spectrum. The highest mutual coupling is 10 dB, in spite of the electrically connected structure. The pro-posed shared radiator element has a wide angular coverage of 100°, maintaining high front-to-back ratio when the respective port is excited. Simulation and measurement results for the proposed structure are illustrated in detail.This work is supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014-2020) under grant agreement H2020-ECSEL-2019-IA-876190, and Fundação para a Ciência e Tecnologia (ECSEL/0006/2019)

    Analysis of Chiral and Achiral Medium Based Coplanar Waveguide Using Improved Full Generalized Exponential Matrix Technique

    Get PDF
    YesIn this work, an analytical study of the electromagnetic propagation in a complex medium-based suspended three-layer coplanar waveguide (CPW) is carried out. The study aims at a numerical calculation of the dominant hybrid mode complex propagation constant in the CPW printed on a bianisotropic substrate. The herein considered bianisotropy is characterized by full 3×3 tensors of permittivity, permeability and magnetoelectric parameters. The study is based on the numerical derivation of the Green's functions of such a complex medium in the spectral domain. The study is carried out using the Full Generalized Exponential Matrix Technique based on matrix- shaped compact mathematical formulations. The Spectral Method of Moments (SMoM) and the Galerkin's procedure are used to solve the resulting homogeneous system of equations. The effect of the chiral and achiral bianisotropy on the complex propagation constant is particularly investigated. Goo d agreements with available data for an anisotropic-medium-based suspended CPW structure are achieved. Various cases of chiral and achiral bianisotropy have been investigated, and particularly, the effect on the dispersion characteristics is presented and compared with cases of isotropic and bianisotropic Tellegen media.FCT/MEC through national funds and when applicable co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2019 project

    Impedance Bandwidth Improvement of a Planar Antenna Based on Metamaterial-Inspired T-Matching Network

    Get PDF
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Omega feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna's performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna's radiation gain and 12% increase in the efficiency at the center frequency, and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results

    Computer modelling of compact 28/38 GHz dual-band antenna for millimeter-wave 5G applications

    Get PDF
    YesA four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of 0.8 mm. It covers dual-band having a fractional bandwidth of 15.7% (27.12–31.34 GHz) and 4.2% (37.21–38.81 GHz) for millimeter-wave applications with a gain of more than 4 dBi at both bands. The proposed antenna analysis in terms of MIMO diversity parameters (Envelope Correlation Coefficient (ECC) and Diversity Gain (DG)) is also carried out. The experimental result in terms of reflection coefficient, radiation pattern, gain and MIMO diversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.This work is supported by the Moore4Medical Project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014-2020) under Grant Agreement H2020-ECSEL-2019-IA-876190, and Fundação para a Ciência e Tecnologia (ECSEL/0006/2019). This work is also funded by the FCT/MEC through national funds and when applicable co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 Project

    8-Port Semi-Circular Arc MIMO Antenna with an Inverted L-Strip Loaded Connected Ground for UWB Applications

    Get PDF
    yesMultiple-input multiple-output (MIMO) antennas with four and eight elements having connected grounds are designed for ultra-wideband applications. Careful optimization of the lines connecting the grounds leads to reduced mutual coupling amongst the radiating patches. The proposed antenna has a modified substrate geometry and comprises a circular arc-shaped conductive element on the top with the modified ground plane geometry. Polarization diversity and isolation are achieved by replicating the elements orthogonally forming a plus shape antenna structure. The modified ground plane consists of an inverted L strip and semi ellipse slot over the partial ground that helps the antenna in achieving effective wide bandwidth spanning from (117.91%) 2.84–11 GHz. Both 4/8-port antenna achieves a size of 0.61 λ × 0.61 λ mm2 (lowest frequency) where 4-port antenna is printed on FR4 substrate. The 4-port UWB MIMO antenna attains wide impedance bandwidth, Omni-directional pattern, isolation >15 dB, ECC 4.5 dB making the MIMO antenna suitable for portable UWB applications. Four element antenna structure is further extended to 8-element configuration with the connected ground where the decent value of IBW, isolation, and ECC is achieved

    Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator

    Get PDF
    YesIn this paper, we present the design of a compact and highly sensitive microwave sensor based on a metamaterial complementary split-ring resonator (CSRR), for liquid characterization at microwave frequencies. The design consists of a two-port microstrip-fed rectangular patch resonating structure printed on a 20 × 28 mm2 Roger RO3035 substrate with a thickness of 0.75 mm, a relative permittivity of 3.5, and a loss tangent of 0.0015. A CSRR is etched on the ground plane for the purpose of sensor miniaturization. The investigated liquid sample is put in a capillary glass tube lying parallel to the surface of the sensor. The parallel placement of the liquid test tube makes the design twice as efficient as a normal one in terms of sensitivity and Q factor. By bending the proposed structure, further enhancements of the sensor design can be obtained. These changes result in a shift in the resonant frequency and Q factor of the sensor. Hence, we could improve the sensitivity 10-fold compared to the flat structure. Subsequently, two configurations of sensors were designed and tested using CST simulation software, validated using HFSS simulation software, and compared to structures available in the literature, obtaining good agreement. A prototype of the flat configuration was fabricated and experimentally tested. Simulation results were found to be in good agreement with the experiments. The proposed devices exhibit the advantage of exploring multiple rapid and easy measurements using different test tubes, making the measurement faster, easier, and more cost-effective; therefore, the proposed high-sensitivity sensors are ideal candidates for various sensing applications.This work was supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014–2020) under grant agreement H2020-ECSEL-2019-IA-876190, and the Fundação para a Ciência e Tecnologia (ECSEL/0006/2019). This project received funding in part from the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), MESRS (Ministry of Higher Education and Scientific Research), Algeria. This work was also supported by the General Directorate of Scientific Research and Technological Development (DGRSDT)–Ministry of Higher Education and Scientific Research (MESRS), Algeria, and funded by the FCT/MEC through national funds and, when applicable, co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 project
    corecore