15 research outputs found

    EVolution : an edge-based variational method for non-rigid multi-modal image registration

    No full text
    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images)

    EVolution: an Edge-based Variational method for non-rigid multi-modal image registration

    No full text
    An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs C Zachiu, N Papadakis, M Ries et al. 3D nonrigid medical image registration using a new information theoretic measur

    Accelerating multi-modal image registration using a supervoxel-based variational framework

    No full text
    For the successful completion of medical interventional procedures, several concepts, such as daily positioning compensation, dose accumulation or delineation propagation, rely on establishing a spatial coherence between planning images and images acquired at different time instants over the course of the therapy. To meet this need, image-based motion estimation and compensation relies on fast, automatic, accurate and precise registration algorithms. However, image registration quickly becomes a challenging and computationally intensive task, especially when multiple imaging modalities are involved. In the current study, a novel framework is introduced to reduce the computational overhead of variational registration methods. The proposed framework selects representative voxels of the registration process, based on a supervoxel algorithm. Costly calculations are hereby restrained to a subset of voxels, leading to a less expensive spatial regularized interpolation process. The novel framework is tested in conjunction with the recently proposed EVolution multi-modal registration method. This results in an algorithm requiring a low number of input parameters, is easily parallelizable and provides an elastic voxel-wise deformation with a subvoxel accuracy. The performance of the proposed accelerated registration method is evaluated on cross-contrast abdominal T1/T2 MR-scans undergoing a known deformation and annotated CT-images of the lung. We also analyze the ability of the method to capture slow physiological drifts during MR-guided high intensity focused ultrasound therapies and to perform multi-modal CT/MR registration in the abdomen. Results have shown that computation time can be reduced by 75% on the same hardware with no negative impact on the accuracy

    Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    Get PDF
    Biological motion is a problem for non-or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of 7 healthy volunteers. Contact echography was performed on all volunteers, while 3 of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non-or mini-invasive clinical intervention. The method demonstrated on average an accuracy of ∼1.5 mm and submillimeter precision. This, together with a computational performance of 20 images/s make the proposed method an attractive solution for real-time target tracking during US-guided clinical interventions

    Evaluating the benefit of PBS vs. VMAT dose distributions in terms of dosimetric sparing and robustness against inter-fraction anatomical changes for pediatric abdominal tumors

    No full text
    BACKGROUND AND PURPOSE: To evaluate the dosimetric sparing and robustness against inter-fraction anatomical changes between photon and proton dose distributions for children with abdominal tumors. MATERIAL AND METHODS: Volumetric modulated arc therapy (VMAT) and intensity-modulated pencil beam scanning (PBS) proton dose distributions were calculated for 20 abdominal pediatric cases (average 3, range 1-8 years). VMAT plans were based on a full-arc while PBS plans on 2-3 posterior-oblique irradiation fields. Plans were robustly optimized on a patient-specific internal target volume (ITV) using a uniform 5 mm set-up uncertainty. Additionally, for the PBS plans a ± 3% proton range uncertainty was accounted for. Fractional dose re-calculations were performed using the planning computed tomography (CT) deformably registered to the daily cone-beam CT (CBCT) images. Fractional doses were accumulated rigidly. Planned and CBCT accumulated VMAT and PBS dose distributions were compared using dose-volume histogram (DVH) parameters. RESULTS: Significant better sparing of the organs at risk with a maximum reduction in the mean dose of 40% was achieved with PBS. Mean ITV DVH parameters differences between planned and CBCT accumulated dose distributions were smaller than 0.5% for both VMAT and PBS. However, the ITV coverage (V95% > 99%) was not reached for one patient for the accumulated VMAT dose distribution. CONCLUSIONS: For pediatric patients with abdominal tumors, improved dosimetric sparing was obtained with PBS compared to VMAT. In addition, PBS delivered by posterior-oblique irradiation fields demonstrated to be robust against anatomical inter-fraction changes. Compared to PBS, daily anatomical changes proved to affect the target coverage of VMAT dose distributions to a higher extent

    Evaluating the benefit of PBS vs. VMAT dose distributions in terms of dosimetric sparing and robustness against inter-fraction anatomical changes for pediatric abdominal tumors

    Get PDF
    BACKGROUND AND PURPOSE:To evaluate the dosimetric sparing and robustness against inter-fraction anatomical changes between photon and proton dose distributions for children with abdominal tumors.MATERIAL AND METHODS:Volumetric modulated arc therapy (VMAT) and intensity-modulated pencil beam scanning (PBS) proton dose distributions were calculated for 20 abdominal pediatric cases (average 3, range 1-8 years). VMAT plans were based on a full-arc while PBS plans on 2-3 posterior-oblique irradiation fields. Plans were robustly optimized on a patient-specific internal target volume (ITV) using a uniform 5 mm set-up uncertainty. Additionally, for the PBS plans a ± 3% proton range uncertainty was accounted for. Fractional dose re-calculations were performed using the planning computed tomography (CT) deformably registered to the daily cone-beam CT (CBCT) images. Fractional doses were accumulated rigidly. Planned and CBCT accumulated VMAT and PBS dose distributions were compared using dose-volume histogram (DVH) parameters.RESULTS:Significant better sparing of the organs at risk with a maximum reduction in the mean dose of 40% was achieved with PBS. Mean ITV DVH parameters differences between planned and CBCT accumulated dose distributions were smaller than 0.5% for both VMAT and PBS. However, the ITV coverage (V95% > 99%) was not reached for one patient for the accumulated VMAT dose distribution.CONCLUSIONS:For pediatric patients with abdominal tumors, improved dosimetric sparing was obtained with PBS compared to VMAT. In addition, PBS delivered by posterior-oblique irradiation fields demonstrated to be robust against anatomical inter-fraction changes. Compared to PBS, daily anatomical changes proved to affect the target coverage of VMAT dose distributions to a higher extent
    corecore