49 research outputs found

    Effect of antibiotics on mechanical properties of Bordetella pertussis examined by atomic force microscopy.

    Get PDF
    In recent years, the coevolution of microorganisms with current antibiotics has increased the mechanisms of bacterial resistance, generating a major health problem worldwide. Bordetella pertussis is a bacterium that causes whooping cough and is capable of adopting different states of virulence, i.e. virulent or avirulent states. In this study, we explored the nanomechanical properties of both virulent and avirulent B. pertussis as exposed to various antibiotics. The nanomechanical studies highlighted that only virulent B. pertussis cells undergo a decrease in their cell elastic modulus and height upon antimicrobial exposure, whereas their avirulent counterparts remain unaffected. This study also permitted to highlight different mechanical properties of individual cells as compared to those growing in close contact with other individuals. In addition, we analyzed the presence on the bacterial cell wall of Filamentous hemagglutinin adhesin (FHA), the major attachment factor produced by virulent Bordetella spp., under different virulence conditions by Force Spectroscopy

    The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins

    Get PDF
    Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥ three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins

    Get PDF
    Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥ three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Evaluation of commercial systems VITEK 2 and API 20NE for identification of Burkholderia cepacia complex bacteria from clinical samples

    Get PDF
    Las especies del complejo Burkholderia cepacia (CBC) son capaces de causar infecciones crónicas del tracto respiratorio en pacientes con fibrosis quística y en otros individuos inmunocomprometidos. La mayoría de estas especies exhiben alta resistencia a la terapia antibiótica, lo que genera la necesidad de una detección rápida y precisa para poder implementar estrategias de control adecuadas. En este trabajo se utilizó la técnica de reacción en cadena de la polimerasa (PCR) para amplificar el gen recA (PCR-recA), con el fin de identificar microorganismos pertenecientes al CBC. Con este método molecular como referencia, se evaluó la sensibilidad (S) y la especificidad (E) de dos sistemas de identificación comerciales automatizados, VITEK 2 y API 20NE (bioMérieux®), así como también el valor de las pruebas bioquímicas manuales más representativas para la identificación de estos microorganismos. El método VITEK 2 presentó una S del 71,1 % y una E del 100 %; para el método API 20NE, estos valores fueron 69,7 % y 90,2 %, respectivamente. En cuanto a las pruebas fenotípicas manuales, los resultados obtenidos fueron más heterogéneos, lo que posiblemente se deba a que estas bacterias podrían sufrir presión selectiva para sobrevivir en pacientes crónicos y perder factores fenotípicos característicos. La técnica de PCR-recA resultó de fácil implementación, por lo que cabe considerar a esta técnica de identificación como una opción viable, aun en laboratorios de diagnóstico clínico de mediana complejidad.Species belonging to the Burkholderia cepacia complex (BCC) are capable of causing chronic respiratory tract infections in patients suffering from cystic fibrosis as wel as in immunocompromised individuals. Most of these species are highly resistant to antibiotic therapy, generating the need for their rapid and accurate detection for the proper treatment and clinical management of these patients. In this wok, the polymerase chain reaction (PCR) technique based on the amplification of the recA gene (PCR-recA) was applied for an accurate identification of bacteria belonging to the BCC. Sensitivity (S) and specificity (E) of two biochemically-based commercial automated systems, API 20NE and VITEK 2 (bioMerieux ® ), and of the most representative biochemical manual tests for the identification of the Burkholderia cepacia complex were herein evaluated. The commercial systems VITEK 2 and API 20NE showed the following sensitivity and specificity vaues for identification to the species level, S: 71.1 %, E: 100 %, S: 69.7 %, E: 90.2 %, respectively. More complex results were observed for phenotypic manual tests, since BCC bacteria can undergo selective pressure to survive in chronic patients causing the loss of their typical phenotypic characteristics. The PCR-recA technique was easy to implement even in medium - complexity clinical diagnostic laboratories.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins

    Get PDF
    Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥ three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    FHA-Mediated Cell-Substrate and Cell-Cell Adhesions Are Critical for Bordetella pertussis Biofilm Formation on Abiotic Surfaces and in the Mouse Nose and the Trachea

    Get PDF
    Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies. Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key factor in establishing structured biofilm communities in the respiratory tract

    Upregulation of Circulating PD-L1/PD-1 Is Associated with Poor Post-Cryoablation Prognosis in Patients with HBV-Related Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The programmed cell death-1 receptor/programmed cell death-1 ligand (PD-1/PD-L1) pathway plays a crucial role in tumor evasion from host immunity. This study was designed to evaluate the association between circulating PD-L1/PD-1 and prognosis after cryoablation in patients with HBV-related hepatocellular carcinoma (HCC). METHODOLOGY/PRINCIPAL FINDINGS: In the present study, 141 HBV-related HCC patients were enrolled and of those 109 patients received cryoablation. Circulating PD-L1/PD-1 expression was tested by flow cytometry, and 23 patients were simultaneously evaluated for intratumoral PD-L1 expression by immunohistochemical staining. Circulating PD-1/PD-L1 expression was associated with severity of diseases in patients with HCC, and the circulating PD-L1 expression was closely correlated with intratumoral PD-L1 expression. Of the clinical parameters, PD-1/PD-L1 expression was associated with tumor size, blood vessel invasion and BCLC staging. Moreover, PD-1/PD-L1 expression dropped after cryoablation while being elevated at the time of tumor recurrence. Patients with higher expression of circulating PD-L1, as well as circulating PD-1, had a significantly shorter overall survival and tumor-free survival than those with lower expression. Multivariate analysis confirmed that circulating PD-L1 could serve as an independent predictor of overall survival and tumor-recurrence survival in HCC patients after cryoablation. CONCLUSIONS/SIGNIFICANCE: Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma
    corecore