7 research outputs found

    Quantum depletion of collapsing Bose-Einstein condensates

    Get PDF
    We perform the first numerical three-dimensional studies of quantum field effects in the Bosenova experiment on collapsing condensates by E. Donley et al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a stochastic truncated Wigner simulation of the collapse, the collapse times are larger than the experimentally measured values. We find that a finite temperature initial state leads to an increased creation rate of uncondensed atoms, but not to a reduction of the collapse time. A comparison of the time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more tractable spherical trap shows excellent agreement between the uncondensed populations. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes

    Compressible Linear Stability of Confluent Wake/Boundary Layers

    No full text

    Boundary Layer Transition on Slender Cones in Conventional and Low Disturbance Mach 6 Wind Tunnels

    No full text
    An experimental investigation was conducted on a 5-degree half-angle cone and a 5-degree half-angle flared cone in a conventional Mach 6 wind tunnel to examine the effects of facility noise on boundary layer transition. The influence of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously obtained in a Mach 6 low disturbance quiet tunnel. Together, the two sets of experiments are believed to represent the first direct comparison of transition onset between a conventional and a low disturbance wind tunnel using a common test model and transition detection technique. In the present conventional hypersonic tunnel experiment, separate measurements of heat transfer and adiabatic wall temperatures were obtained on the conical models at small angles of attack over a range of Reynolds numbers, which resulted in laminar, transitional, and turbulent flow . Smooth model turbulent heating distributions are compared to that obtained with transition forced via discrete surface roughness. The model nosetip radius was varied to examine the effects of bluntness on transition onset. Despite wall-to-total temperature differences between the transient heating measurements and the adiabatic wall temperature measurements, the two methods for determining sharp cone transition onset generally yielded equivalent locations. In the "noisy" mode of the hypersonic low disturbance tunnel, transition onset occurred earlier than that measured in the conventional hypersonic tunnel, suggesting higher levels of freestream acoustic radiation relative to the conventional tunnel. At comparable freestream conditions, the transition onset Reynolds number under low disturbance conditions was a factor of 1.3 greater than that measured on flared co..
    corecore