3,169 research outputs found
Mapping X-ray heliometer for Orbiting Solar Observatory-8
An instrument combining mechanical collimators and proportional counter detectors was designed to record solar X-rays with energies of 2-30 keV with good temperal, spectral, and spatial resolution. The overall operation of the instrument is described to the degree needed by personnel who interact with the experimenter during SC/experiment interfacing, experiment testing, observatory integration and testing, and pre/post launch data processing. The general layout of the instrument is given along with a summary of the instrument characteristics
Energy Loss from a Moving Vortex in Superfluid Helium
We present measurements on both energy loss and pinning for a vortex
terminating on the curved surface of a cylindrical container. We vary surface
roughness, cell diameter, fluid velocity, and temperature. Although energy loss
and pinning both arise from interactions between the vortex and the surface,
their dependences on the experimental parameters differ, suggesting that
different mechanisms govern the two effects. We propose that the energy loss
stems from reconnections with a mesh of microscopic vortices that covers the
cell wall, while pinning is dominated by other influences such as the local
fluid velocity.Comment: 8 pages, 6 figure
Temperature and Emission-Measure Profiles Along Long-Lived Solar Coronal Loops Observed with TRACE
We report an initial study of temperature and emission measure distributions
along four steady loops observed with the Transition Region and Coronal
Explorer (TRACE) at the limb of the Sun. The temperature diagnostic is the
filter ratio of the extreme-ultraviolet 171-angstrom and 195-angstrom
passbands. The emission measure diagnostic is the count rate in the
171-angstrom passband. We find essentially no temperature variation along the
loops. We compare the observed loop structure with theoretical isothermal and
nonisothermal static loop structure.Comment: 10 pages, 3 postscript figures (LaTeX, uses aaspp4.sty). Accepted by
ApJ Letter
The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment
The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided
Uncertainty Analysis in Population-Based Disease Microsimulation Models
Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models
40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer
Holomorphic Anomalies in Topological Field Theories
We study the stringy genus one partition function of SCFT's. It is
shown how to compute this using an anomaly in decoupling of BRST trivial states
from the partition function. A particular limit of this partition function
yields the partition function of topological theory coupled to topological
gravity. As an application we compute the number of holomorphic elliptic curves
over certain Calabi-Yau manifolds including the quintic threefold. This may be
viewed as the first application of mirror symmetry at the string quantum level.Comment: 32 pages. Appendix by S.Kat
Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+
A series of neutral Ru-II half-sandwich complexes of the type [(eta(6)-arene)Ru(N,N')Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N' is N-(2-aminoethyl) -4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)-methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD(+) to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N' chelating ligand. The TOF decreased with variation in the N,N' chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOP of 10.4 h(-1). The effects of NAD(+) and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N')(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the Ms En system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h(-1) for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues
Experimental investigation at 10 Gb/s of the noise suppression capabilities in a pass-through configuration in SOA-based interferometric structures
- …
