36 research outputs found

    Isolation of Galectin-1 from Human Platelets: Its Interaction with Actin

    Get PDF
    Galectins are a family of animal lectins defined by their β-galactoside-binding specificity and a consensus sequence in their carbohydrate-recognition domain. Galectin-1 (Gal-1) is expressed as a non-covalently linked homodimer present in a variety of tissues. Here we describe its isolation from human platelets by a procedure involving ionic exchange chromatography and affinity chromatography on lactose-agarose. Platelet Gal-1 co-purifies with actin, forming an actin-Gal-1 complex which does no dissociate even after treatment with sodium dodecyl sulfate. The presence of both proteins was confirmed by Western blot and by trypsin digestion followed by mass spectrometry identification. By hemagglutination assays we studied the response of recombinant Gal-1/actin, mixed and pre-incubated in different proportions, and then tested against neuraminidase treated rabbit red blood cells. The complex formation was confirmed by confocal microscopy, showing that both proteins co-localised in resting platelets as well as in thrombin-activated ones. These results suggest that endogenous Gal-1 forms an intracellular complex with monomeric actin and that, after platelet activation, Gal-1 could play a role in the polymerization-depolymerization process of actin, which concludes in platelet aggregation.Facultad de Ciencias Exacta

    Partial Duplication in the "Hinge" Region of IgA1 Myeloma Proteins

    No full text

    Galectin-1: Biphasic growth regulation of Leydig tumor cells

    No full text
    Galectin-1 (Gal-1) is a widely expressed β-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (ΔΨ m), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology. © Copyright 2006 Oxford University Press.Fil:Troncoso, M.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Patrignani, Z.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pignataro, O.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Direct UV-MALDI-TOF MS analysis of (Glyco)proteins of fractions of bovine seminal plasma

    No full text
    Bovine seminal plasma was submitted to chromatography on Con A-Sepharose. The "noninteracting", "weakly-interacting" and "strongly-interacting" fractions were analyzed through UV-MALDI-TOF MS together with a subfraction of the "non-interacting" material, using sinapinic acid (SA) as matrix. The spectra were obtained in linear positive mode in the 4.0-90.0 kDa mass/charge range showing peaks in well defined zones, namely: 5.5-8.0 kDa, 10.0-12.0 kDa, 12.5-14.0 kDa (major), 23.2-23.7 kDa, 26.1-27.5 kDa and 38.0-40.0 kDa. High sensitivity spectra showed some very small peaks until 90 kDa. Bovine seminal protein (BSP-A3), acidic seminal fluid protein (aSFP) and PDC-109 glycoproteins (BSP-A1 and BSP-A2) were identified. Caltrin, the human epididymis-specific glycoprotein (HE4), the calcium transport inhibitor protein, the inhibitor of metalloprotease 2 (TIMP-2), osteopontin (OPN) and the prostatic acid protease (PAP) were tentatively identified. The molecular weight of some peaks can be arranged in a sequence from that of BSP-A3 going through the molecular weights of glycoforms (including the known BSP-A1 and BSP-A2) which differ in the amounts of neutral hexoses and sialic acids, composing a BSP-family more extended than previously reported. Another two families could be builded up from proteins of molecular weight of about 12730 and 12750 Da and glycoforms which differ from them also by hexoses and sialic acids. The structures of the deduced O-linked oligosaccharides of the glycoforms are in complete agreement to that determined for the BSP-A1 Oligosaccharide. Small differences in the m. w. of some (glyco)proteins were attributed to genetic polymorphysm. The identification of proteins and O-linked glycoproteins in the "interacting" fractions of the chromatography suggests that the fractionation was not due to specific affinity interactions but to non-specific hydrophobic interactions of the proteins with the hydrophobic pocked of the Con A.Fil:Cerezo, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Giudicessi, S.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Erra-Balsells, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marquinez, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore