132 research outputs found

    A discrete cluster of urinary biomarkers discriminates between active systemic lupus erythematosus patients with and without glomerulonephritis.

    Get PDF
    BackgroundManagement of lupus nephritis (LN) would be greatly aided by the discovery of biomarkers that accurately reflect changes in disease activity. Here, we used a proteomics approach to identify potential urinary biomarkers associated with LN.MethodsUrine was obtained from 60 LN patients with paired renal biopsies, 25 active non-LN SLE patients, and 24 healthy controls. Using Luminex, 128 analytes were quantified and normalized to urinary creatinine levels. Data were analyzed by linear modeling and non-parametric statistics, with corrections for multiple comparisons. A second cohort of 33 active LN, 16 active non-LN, and 30 remission LN SLE patients was used to validate the results.ResultsForty-four analytes were identified that were significantly increased in active LN as compared to active non-LN. This included a number of unique proteins (e.g., TIMP-1, PAI-1, PF4, vWF, and IL-15) as well as known candidate LN biomarkers (e.g., adiponectin, sVCAM-1, and IL-6), that differed markedly (>4-fold) between active LN and non-LN, all of which were confirmed in the validation cohort and normalized in remission LN patients. These proteins demonstrated an enhanced ability to discriminate between active LN and non-LN patients over several previously reported biomarkers. Ten proteins were found to significantly correlate with the activity score on renal biopsy, eight of which strongly discriminated between active proliferative and non-proliferative/chronic renal lesions.ConclusionsA number of promising urinary biomarkers that correlate with the presence of active renal disease and/or renal biopsy changes were identified and appear to outperform many of the existing proposed biomarkers

    TLR Tolerance Reduces IFN-Alpha Production Despite Plasmacytoid Dendritic Cell Expansion and Anti-Nuclear Antibodies in NZB Bicongenic Mice

    Get PDF
    Genetic loci on New Zealand Black (NZB) chromosomes 1 and 13 play a significant role in the development of lupus-like autoimmune disease. We have previously shown that C57BL/6 (B6) congenic mice with homozygous NZB chromosome 1 (B6.NZBc1) or 13 (B6.NZBc13) intervals develop anti-nuclear antibodies and mild glomerulonephritis (GN), together with increased T and B cell activation. Here, we produced B6.NZBc1c13 bicongenic mice with both intervals, and demonstrate several novel phenotypes including: marked plasmacytoid and myeloid dendritic cell expansion, and elevated IgA production. Despite these changes, only minor increases in anti-nuclear antibody production were seen, and the severity of GN was reduced as compared to B6.NZBc1 mice. Although bicongenic mice had increased levels of baff and tnf-α mRNA in their spleens, the levels of IFN-α-induced gene expression were reduced. Splenocytes from bicongenic mice also demonstrated reduced secretion of IFN-α following TLR stimulation in vitro. This reduction was not due to inhibition by TNF-α and IL-10, or regulation by other cellular populations. Because pDC in bicongenic mice are chronically exposed to nuclear antigen-containing immune complexes in vivo, we examined whether repeated stimulation of mouse pDC with TLR ligands leads to impaired IFN-α production, a phenomenon termed TLR tolerance. Bone marrow pDC from both B6 and bicongenic mice demonstrated markedly inhibited secretion of IFN-α following repeated stimulation with a TLR9 ligand. Our findings suggest that the expansion of pDC and production of anti-nuclear antibodies need not be associated with increased IFN-α production and severe kidney disease, revealing additional complexity in the regulation of autoimmunity in systemic lupus erythematosus

    Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity

    Get PDF
    Abstract Introduction Systemic lupus erythematosus is a genetically complex disease. Currently, the precise allelic polymorphisms associated with this condition remain largely unidentified. In part this reflects the fact that multiple genes, each having a relatively minor effect, act in concert to produce disease. Given this complexity, analysis of subclinical phenotypes may aid in the identification of susceptibility alleles. Here, we used flow cytometry to investigate whether some of the immune abnormalities that are seen in the peripheral blood lymphocyte population of lupus patients are seen in their first-degree relatives. Methods Peripheral blood mononuclear cells were isolated from the subjects, stained with fluorochrome-conjugated monoclonal antibodies to identify various cellular subsets, and analyzed by flow cytometry. Results We found reduced proportions of natural killer (NK)T cells among 367 first-degree relatives of lupus patients as compared with 102 control individuals. There were also slightly increased proportions of memory B and T cells, suggesting increased chronic low-grade activation of the immune system in first-degree relatives. However, only the deficiency of NKT cells was associated with a positive anti-nuclear antibody test and clinical autoimmune disease in family members. There was a significant association between mean parental, sibling, and proband values for the proportion of NKT cells, suggesting that this is a heritable trait. Conclusions The findings suggest that analysis of cellular phenotypes may enhance the ability to detect subclinical lupus and that genetically determined altered immunoregulation by NKT cells predisposes first-degree relatives of lupus patients to the development of autoimmunity

    Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    Get PDF
    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities

    Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    Get PDF
    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from 95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10-8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.info:eu-repo/semantics/publishedVersio

    Altered Development of NKT Cells, γδ T Cells, CD8 T Cells and NK Cells in a PLZF Deficient Patient

    Get PDF
    In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease
    corecore