415 research outputs found

    High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells

    Get PDF
    T follicular helper (Tfh) cells are the conventional drivers of protective, germinal center (GC)-based antiviral antibody responses. However, loss of Tfh cells and GCs has been observed in patients with severe COVID-19. As T cell-B cell interactions and immunoglobulin class switching still occur in these patients, non-canonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both Tfh-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Even though Tfh-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high-affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. Indeed, we found by epitope mapping and BCR sequencing that Tfh cells focused the B cell response and therefore, in the absence of Tfh cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation

    Cyclotron resonance of correlated electrons in semiconductor heterostructures

    Full text link
    The cyclotron resonance absorption of two-dimensional electrons in semiconductor heterostructures in high magnetic fields is investigated. It is assumed that the ionized impurity potential is a dominant scattering mechanism, and the theory explicitly takes the Coulomb correlation effect into account through the Wigner phonons. The cyclotron resonance linewidth is in quantitative agreement with the experiment in the Wigner crystal regime at T=4.2K. Similar to the cyclotron resonance theory of the charge density waves pinned by short-range impurities, the present results for the long-range scattering also show the doubling of the resonance peaks. However, unlike the case of the charge density waves, our theory gives the pinning mode independent of the bulk compressibility of the substrate materials.Comment: 6 pages, 5 figure

    Criteria for reducing unnecessary testing for herpes simplex virus, varicella-zoster virus, cytomegalovirus, and enterovirus in cerebrospinal fluid samples from adults

    Get PDF
    Excessive utilization of laboratory diagnostic testing leads to increased health care costs. We evaluated criteria to reduce unnecessary nucleic acid amplification testing (NAAT) for viral pathogens in cerebrospinal fluid (CSF) samples from adults. This is a single-center split retrospective observational study with a screening cohort from 2008 to 2012 and a validation cohort from 2013. Adults with available results for herpes simplex virus 1/2 (HSV-1/2), varicella-zoster virus (VZV), cytomegalovirus (CMV), or enterovirus (EV) NAAT with CSF samples between 2008 and 2013 were included (n = 10,917). During this study, 1.3% (n = 140) of viral NAAT studies yielded positive results. The acceptance criteria of >10 nucleated cells/μl in the CSF of immunocompetent subjects would have reduced HSV-1/2, VZV, CMV, and EV testing by 63%, 50%, 44%, and 51%, respectively, from 2008 to 2012. When these criteria were applied to the 2013 validation data set, 54% of HSV-1/2, 57% of VZV, 35% of CMV, and 56% of EV tests would have been cancelled. No clinically significant positive tests would have been cancelled in 2013 with this approach. The introduction of a computerized order entry set was associated with increased test requests, suggesting that computerized order sets may contribute to unnecessary testing. Acceptance criteria of >10 nucleated cells/μl in the CSF of immunocompetent adults for viral CSF NAAT assays would increase clinical specificity and preserve sensitivity, resulting in significant cost savings. Implementation of these acceptance criteria led to a 46% reduction in testing during a limited follow-up period

    CD300LF polymorphisms of inbred mouse strains confer resistance to murine norovirus infection in a cell type-dependent manner

    Get PDF
    Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC\u27 loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry
    • …
    corecore