1,365 research outputs found

    Persistent accelerations disentangle Lagrangian turbulence

    Full text link
    Particles in turbulence frequently encounter extreme accelerations between extended periods of quiescence. The occurrence of extreme events is closely related to the intermittent spatial distribution of intense flow structures such as vorticity filaments. This mixed history of flow conditions leads to very complex particle statistics with a pronounced scale dependence, which presents one of the major challenges on the way to a non-equilibrium statistical mechanics of turbulence. Here, we introduce the notion of persistent Lagrangian acceleration, quantified by the squared particle acceleration coarse-grained over a viscous time scale. Conditioning Lagrangian particle data from simulations on this coarse-grained acceleration, we find remarkably simple, close-to-Gaussian statistics for a range of Reynolds numbers. This opens the possibility to decompose the complex particle statistics into much simpler sub-ensembles. Based on this observation, we develop a comprehensive theoretical framework for Lagrangian single-particle statistics that captures the acceleration, velocity increments as well as single-particle dispersion

    Investigations into music composition in surround sound

    Get PDF
    This research project investigates the relationship between music composition, particularly electronic pop, and sound design (the editing/mixing of sound for cinema), with its main focus on Multi-channel (Surround Sound) techniques. It proposes new practices that extend music compositional tools into embracing spatial techniques employed by sound design. My research encompasses both the conceptual development (ie spatial techniques in creating narratives) and the practical issues relating to the production and technology needed for such works

    Bias in particle tracking acceleration measurement

    Full text link
    We investigate sources of error in acceleration statistics from Lagrangian Particle Tracking (LPT) data and demonstrate techniques to eliminate or minimise bias errors introduced during processing. Numerical simulations of particle tracking experiments in isotropic turbulence show that the main sources of bias error arise from noise due to position uncertainty and selection biases introduced during numerical differentiation. We outline the use of independent measurements and filtering schemes to eliminate these biases. Moreover, we test the validity of our approach in estimating the statistical moments and probability densities of the Lagrangian acceleration. Finally, we apply these techniques to experimental particle tracking data and demonstrate their validity in practice with comparisons to available data from literature. The general approach, which is not limited to acceleration statistics, can be applied with as few as two cameras and permits a substantial reduction in the spatial resolution and sampling rate required to adequately measure statistics of Lagrangian acceleration

    A Model of Comprehensive Unification

    Full text link
    Comprehensive - that is, gauge and family - unification using spinors has many attractive features, but it has been challenged to explain chirality. Here, by combining an orbifold construction with more traditional ideas, we address that difficulty. Our candidate model features three chiral families and leads to an acceptable result for quantitative unification of couplings. A potential target for accelerator and astronomical searches emerges.Comment: 5 pages, 2 figures. Published versio

    Herzberg Circuit and Berry's Phase in Chirality-based Coded Qubit in a Triangular Triple Quantum Dot

    Full text link
    We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry's phase in a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron spin each. The qubit is encoded in the two degenerate states of a three spin complex with total spin S=1/2S=1/2. Using a Hubbard and Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the successive on-site energies of quantum dots and tunnel couplings across a pair of neighbouring dots. It is explicitly shown that encircling the degeneracy point leads to the accumulation of the geometrical Berrys phase. We show that only triangular but not linear quantum dot molecule allows for the generation of Berry's phase and we discuss a protocol to detect this geometrical phase

    Transitions of turbulent superstructures in generalized Kolmogorov flow

    Full text link
    Self-organized large-scale flow structures occur in a wide range of turbulent flows. Yet, their emergence, dynamics, and interplay with small-scale turbulence are not well understood. Here, we investigate such self-organized turbulent superstructures in three-dimensional turbulent Kolmogorov flow with large-scale drag. Through extensive simulations, we uncover their low-dimensional dynamics featuring transitions between several stable and meta-stable large-scale structures as a function of the damping parameter. The main dissipation mechanism for the turbulent superstructures is the generation of small-scale turbulence, whose local structure depends strongly on the large-scale flow. Our results elucidate the generic emergence and low-dimensional dynamics of large-scale flow structures in fully developed turbulence and reveal a strong coupling of large- and small-scale flow features.Comment: v2: Revised manuscrip

    Energy Spectrum of Anyons in a Magnetic Field

    Full text link
    For the many-anyon system in external magnetic field, we derive the energy spectrum as an exact solution of the quantum eigenvalue problem with particular topological constraints. Our results agree with the numerical spectra recently obtained for the 3- and the 4-anyon systems.Comment: 11 pages in Plain LaTeX (plus 4 figures available on request), DFPD 92/TH/4

    Schr\"{o}dinger Fields on the Plane with non-Abelian Chern-Simons Interactions

    Full text link
    Physical content of the nonrelativistic quantum field theory with non-Abelian Chern-Simons interactions is clarified with the help of the equivalent first- quantized description which we derive in any physical gauge.Comment: 12 pages, LaTex, SNUTP 94-1
    • …
    corecore