4,646 research outputs found
Neutrino Physics: an Update
We update our recent didactic survey of neutrino physics, including new
results from the Sudbury Neutrino Observatory and KamLAND experiments, and
recent constraints from WMAP and other cosmological probes.Comment: latex; 19 pages; five figure
Neutrino Physics
The basic concepts of neutrino physics are presented at a level appropriate
for integration into elementary courses on quantum mechanics and/or modern
physics.Comment: Prepared for the American Journal of Physics; 50 pages; 11 figures
(10 included); late
Multiparameter Riesz Commutators
It is shown that product BMO of Chang and Fefferman, defined on the product
of Euclidean spaces can be characterized by the multiparameter commutators of
Riesz transforms. This extends a classical one-parameter result of Coifman,
Rochberg, and Weiss, and at the same time extends the work of Lacey and
Ferguson and Lacey and Terwilleger on multiparameter commutators with Hilbert
transforms. The method of proof requires the real-variable methods throughout,
which is new in the multi-parameter context.Comment: 38 Pages. References updated. To appear in American J Mat
Multi-Parameter Div-Curl Lemmas
We study the possible analogous of the Div-Curl Lemma in classical harmonic
analysis and partial differential equations, but from the point of view of the
multi-parameter setting. In this context we see two possible Div-Curl lemmas
that arise. Extensions to differential forms are also given.Comment: v1: 8 page
Recommended from our members
Rapid Response of an Academic Surgical Department to the COVID-19 Pandemic: Implications for Patients, Surgeons, and the Community.
BackgroundAs the coronavirus disease 2019 (COVID-19) pandemic continues to spread, swift actions and preparation are critical for ensuring the best outcomes for patients and providers. We aim to describe our hospital and Department of Surgery's experience in preparing for the COVID-19 pandemic and caring for surgical patients during this unprecedented time.Study designThis is a descriptive study outlining the strategy of a single academic health system for addressing the following 4 critical issues facing surgical departments during the COVID-19 pandemic: developing a cohesive leadership team and system for frequent communication throughout the department; ensuring adequate hospital capacity to care for an anticipated influx of COVID-19 patients; safeguarding supplies of blood products and personal protective equipment to protect patients and providers; and preparing for an unstable workforce due to illness and competing personal priorities, such as childcare.ResultsThrough collaborative efforts within the Department of Surgery and hospital, we provided concise and regular communication, reduced operating room volume by 80%, secured a 4-week supply of personal protective equipment, and created reduced staffing protocols with back-up staffing plans.ConclusionsBy developing an enabling infrastructure, a department can nimbly respond to crises like COVID-19 by promoting trust among colleagues and emphasizing an unwavering commitment to excellent patient care. Sharing principles and practical applications of these changes is important to optimize responses across the country and the world
From Hadrons to Nuclei: Crossing the Border
The study of nuclei predates by many years the theory of quantum
chromodynamics. More recently, effective field theories have been used in
nuclear physics to ``cross the border'' from QCD to a nuclear theory. We are
now entering the second decade of efforts to develop a perturbative theory of
nuclear interactions using effective field theory. This work describes the
current status of these efforts.Comment: 141 pages, 58 figs, latex. To appear in the Boris Ioffe Festschrift,
ed. by M. Shifman, World Scientifi
In vivo compartmentalization of functionally distinct, rapidly responsive antigen-specific T-cell populations in DNA-immunized or Salmonella enterica serovar Typhimurium-infected mice
The location and functional properties of antigen-specific memory T-cell populations in lymphoid and nonlymphoid compartments following DNA immunization or infection with Salmonella were investigated. Epitope-specific CD8+-T-cell expansion and retention during the memory phase were analyzed for DNA-immunized mice by use of a 5-h peptide restimulation assay. These data revealed that epitope-specific gamma interferon (IFN-{gamma})-positive CD8+ T cells occur at higher frequencies in the spleen, liver, and blood than in draining or peripheral lymph nodes during the expansion phase. Moreover, this distribution is maintained into long-term memory. The location and function of both CD4+ and CD8+ Salmonella-specific memory T cells in mice who were given a single dose of Salmonella enterica serovar Typhimurium was also quantitated by an ex vivo restimulation with bacterial lysate to detect the total Salmonella-specific memory pool. Mice immunized up to 6 months previously with S. enterica serovar Typhimurium had bacterium-specific CD4+ T cells that were capable of producing IFN-{gamma} or tumor necrosis factor alpha (TNF-{alpha}) at each site analyzed. Similar findings were observed for CD8+ T cells that were capable of producing IFN-{gamma}, while a much lower frequency and more restricted distribution were associated with TNF-{alpha}-producing CD8+ T cells. This study is the first to assess the frequencies, locations, and functions of both CD4+ and CD8+ memory T-cell populations in the same Salmonella-infected individuals and demonstrates the organ-specific functional compartmentalization of memory T cells after Salmonella infection
Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces
For some years Lanczos moments methods have been combined with large-scale shell-model calculations in evaluations of the spectral distributions of certain operators. This technique is of great value because the alternative, a state-by-state summation over final states, is generally not feasible. The most celebrated application is to the Gamow-Teller operator, which governs β decay and neutrino reactions in the allowed limit. The Lanczos procedure determines the nuclear response along a line q = 0 in the (ω,q) plane, where ω and q are the energy and three-momentum transferred to the nucleus, respectively. However, generalizing such treatments from the allowed limit to general electroweak response functions at arbitrary momentum transfers seems considerably more difficult: The response function must be determined over the entire (ω,q) plane for an operator O(q) that is not fixed, but depends explicitly on q. Such operators arise in any semileptonic process in which the momentum transfer is comparable with (or larger than) the inverse nuclear size. Here we show, for Slater determinants built on harmonic-oscillator basis functions, that the nuclear response for any multipole operator O(q) can be determined efficiently over the full response plane by a generalization of the standard Lanczos moments method. We describe the piecewise moments method and thoroughly explore its convergence properties for the test case of electromagnetic responses in a full sd-shell calculation of ^(28)Si. We discuss possible extensions to a variety of electroweak processes, including charged- and neutral-current neutrino scattering
- …