133 research outputs found

    Evidence of blood stage efficacy with a virosomal malaria vaccine in a Phase IIa clinical trial

    Get PDF
    Background Previous research indicates that a combination vaccine targeting different stages of the malaria life cycle is likely to provide the most effective malaria vaccine. This trial was the first to combine two existing vaccination strategies to produce a vaccine that induces immune responses to both the pre-erythrocytic and blood stages of the P. falciparum life cycle. Methods This was a Phase I/IIa study of a new combination malaria vaccine FFM ME-TRAP+PEV3A. PEV3A includes peptides from both the pre-erythrocytic circumsporozoite protein and the blood-stage antigen AMA-1. This study was conducted at the Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK. The participants were healthy, malaria naĂŻve volunteers, from Oxford. The interventions were vaccination with PEV3A alone, or PEV3A+FFM ME-TRAP. The main outcome measure was protection from malaria in a sporozoite challenge model. Other outcomes included measures of parasite specific immune responses induced by either vaccine; and safety, assessed by collection of adverse event data. Results We observed evidence of blood stage immunity in PEV3A vaccinated volunteers, but no volunteers were completely protected from malaria. PEV3A induced high antibody titres, and antibodies bound parasites in immunofluorescence assays. Moreover, we observed boosting of the vaccine-induced immune response by sporozoite challenge. Immune responses induced by FFM ME-TRAP were unexpectedly low. The vaccines were safe, with comparable side effect profiles to previous trials. Although there was no sterile protection two major observations support an effect of the vaccine-induced response on blood stage parasites: (i) Lower rates of parasite growth were observed in volunteers vaccinated with PEV3A compared to unvaccinated controls (p = 0.012), and this was reflected in the PCR results from PEV3A vaccinated volunteers. These showed early control of parasitaemia by some volunteers in this group. One volunteer, who received PEV3A alone, was diagnosed very late, on day 20 compared to an average of 11.8 days in unvaccinated controls. (ii). Morphologically abnormal parasites were present in the blood of all (n = 24) PEV3A vaccinated volunteers, and in only 2/6 controls (p = 0.001). We describe evidence of vaccine-induced blood stage efficacy for the first time in a sporozoite challenge study

    Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins

    Full text link
    Reactive nitrogen species (RNS) function as powerful antimicrobials in host defence, but so far little is known about their bacterial targets. In this study, we set out to identify Escherichia coli proteins with RNS-sensitive cysteines. We found that only a very select set of proteins contain cysteines that undergo reversible thiol modifications upon nitric oxide (NO) treatment in vivo . Of the 10 proteins that we identified, six (AtpA, AceF, FabB, GapA, IlvC, TufA) have been shown to harbour functionally important thiol groups and are encoded by genes that are considered essential under our growth conditions. Media supplementation studies suggested that inactivation of AceF and IlvC is, in part, responsible for the observed NO-induced growth inhibition, indicating that RNS-mediated modifications play important physiological roles. Interestingly, the majority of RNS-sensitive E. coli proteins differ from E. coli proteins that harbour H 2 O 2 -sensitive thiol groups, implying that reactive oxygen and nitrogen species affect distinct physiological processes in bacteria. We confirmed this specificity by analysing the activity of one of our target proteins, the small subunit of glutamate synthase. In vivo and in vitro activity studies confirmed that glutamate synthase rapidly inactivates upon NO treatment but is resistant towards other oxidative stressors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72397/1/j.1365-2958.2007.05964.x.pd

    A Randomized Placebo-Controlled Phase Ia Malaria Vaccine Trial of Two Virosome-Formulated Synthetic Peptides in Healthy Adult Volunteers

    Get PDF
    BACKGROUND AND OBJECTIVES: Influenza virosomes represent an innovative human-compatible antigen delivery system that has already proven its suitability for subunit vaccine design. The aim of the study was to proof the concept that virosomes can also be used to elicit high titers of antibodies against synthetic peptides. The specific objective was to demonstrate the safety and immunogenicity of two virosome-formulated P. falciparum protein derived synthetic peptide antigens given in two different doses alone or in combination. METHODOLOGY/PRINCIPAL FINDINGS: The design was a single blind, randomized, placebo controlled, dose-escalating study involving 46 healthy Caucasian volunteers aged 18-45 years. Five groups of 8 subjects received virosomal formulations containing 10 microg or 50 microg of AMA 49-CPE, an apical membrane antigen-1 (AMA-1) derived synthetic phospatidylethanolamine (PE)-peptide conjugate or 10 ug or 50 ug of UK39, a circumsporozoite protein (CSP) derived synthetic PE-peptide conjugate or 50 ug of both antigens each. A control group of 6 subjects received unmodified virosomes. Virosomal formulations of the antigens (designated PEV301 and PEV302 for the AMA-1 and the CSP virosomal vaccine, respectively) or unmodified virosomes were injected i. m. on days 0, 60 and 180. In terms of safety, no serious or severe adverse events (AEs) related to the vaccine were observed. 11/46 study participants reported 16 vaccine related local AEs. Of these 16 events, all being pain, 4 occurred after the 1(st), 7 after the 2(nd) and 5 after the 3(rd) vaccination. 6 systemic AEs probably related to the study vaccine were reported after the 1(st) injection, 10 after the 2(nd) and 6 after the 3(rd). Generally, no difference in the distribution of the systemic AEs between either the doses applied (10 respectively 50 microg) or the synthetic antigen vaccines (PEV301 and PEV302) used for immunization was found. In terms of immunogenicity, both PEV301 and PEV302 elicited already after two injections a synthetic peptide-specific antibody response in all volunteers immunized with the appropriate dose. In the case of PEV301 the 50 microg antigen dose was associated with a higher mean antibody titer and seroconversion rate than the 10 microg dose. In contrast, for PEV302 mean titer and seroconversion rate were higher with the lower dose. Combined delivery of PEV301 and PEV302 did not interfere with the development of an antibody response to either of the two antigens. No relevant antibody responses against the two malaria antigens were observed in the control group receiving unmodified virosomes. CONCLUSIONS: The present study demonstrates that three immunizations with the virosomal malaria vaccine components PEV301 or/and PEV302 (containing 10 microg or 50 microg of antigen) are safe and well tolerated. At appropriate antigen doses seroconversion rates of 100% were achieved. Two injections may be sufficient for eliciting an appropriate immune response, at least in individuals with pre-existing anti-malarial immunity. These results justify further development of a final multi-stage virosomal vaccine formulation incorporating additional malaria antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT00400101

    Virosome-Formulated Plasmodium falciparum AMA-1 & CSP Derived Peptides as Malaria Vaccine: Randomized Phase 1b Trial in Semi-Immune Adults & Children

    Get PDF
    BACKGROUND\ud \ud This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.\ud \ud METHODS\ud \ud The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5-9 years) living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal¼V on day 0 and 90.\ud \ud RESULTS\ud \ud No serious or severe adverse events (AEs) related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal¼V group compared to the PEV3B group (p = 0.014). In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal¼V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal¼V; RR  = 0.50 [95%-CI: 0.29-0.88], p = 0.02).\ud \ud CONCLUSION\ud \ud These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT00513669

    Finding Our Way through Phenotypes

    Get PDF
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility

    Die Stoffwechselwirkungen der SchilddrĂŒsenhormone

    Get PDF

    Studies on the xanthine oxidase activity of mammalian cells

    Full text link
    Xanthine oxidase in man is confined to but a few tissues and is absent from cultured cell strains. In rodents, however, the enzyme is more widely distributed among the tissues and can be demonstrated in most cell lines. Rodents possess the enzyme uricase and are therefore able to carry purine catabolism one step further than man. Preliminary results suggest that uricase is restricted to but a few rodent tissues and is absent from cultured rodent cells. Hence it may be that in each species only the final enzyme of purine catabolism is tissue restricted. In other experiments, mammalian cells were grown in the presence of compounds known to induce xanthine oxidase in a eukaryotic fungus (Aspergillus nidulans) . These compounds did not induce the enzyme in mammalian cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44184/1/10528_2004_Article_BF00487339.pd

    Pharmacokinetics of ethanol after oral administration in the fasting state

    Full text link
    A nonlinear relationship between the total area under the blood ethanol concentration-time curve and the orally administered dose (mg/kg) of ethanol was observed in fasting subjects. A preliminary model, based on physiological considerations, was elaborated and shown, for the first time, to describe the entire time course of blood alcohol concentrations after four different doses of alcohol. The model could be refined by further experimentation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45071/1/10928_2005_Article_BF01065396.pd
    • 

    corecore