522 research outputs found
Spatiotemporal complexity of a ratio-dependent predator-prey system
In this paper, we investigate the emergence of a ratio-dependent
predator-prey system with Michaelis-Menten-type functional response and
reaction-diffusion. We derive the conditions for Hopf, Turing and Wave
bifurcation on a spatial domain. Furthermore, we present a theoretical analysis
of evolutionary processes that involves organisms distribution and their
interaction of spatially distributed population with local diffusion. The
results of numerical simulations reveal that the typical dynamics of population
density variation is the formation of isolated groups, i.e., stripelike or
spotted or coexistence of both. Our study shows that the spatially extended
model has not only more complex dynamic patterns in the space, but also chaos
and spiral waves. It may help us better understand the dynamics of an aquatic
community in a real marine environment.Comment: 6pages, revtex
The sea lamprey has a primordial accessory olfactory system
BACKGROUND: A dual olfactory system, represented by two anatomically distinct but spatially proximate chemosensory epithelia that project to separate areas of the forebrain, is known in several classes of tetrapods. Lungfish are the earliest evolving vertebrates known to have this dual system, comprising a main olfactory and a vomeronasal system (VNO). Lampreys, a group of jawless vertebrates, have a single nasal capsule containing two anatomically distinct epithelia, the main (MOE) and the accessory olfactory epithelia (AOE). We speculated that lamprey AOE projects to specific telencephalic regions as a precursor to the tetrapod vomeronasal system. RESULTS: To test this hypothesis, we characterized the neural circuits and molecular profiles of the accessory olfactory epithelium in the sea lamprey (Petromyzon marinus). Neural tract-tracing revealed direct and reciprocal connections with the dorsomedial telencephalic neuropil (DTN) which in turn projects directly to the dorsal pallium and the rostral hypothalamus. High-throughput sequencing demonstrated that the main and the accessory olfactory epithelia have virtually identical profiles of expressed genes. Real time quantitative PCR confirmed expression of representatives of all 3 chemoreceptor gene families identified in the sea lamprey genome. CONCLUSION: Anatomical and molecular evidence shows that the sea lamprey has a primordial accessory olfactory system that may serve a chemosensory function
Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.
Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid-β peptide (Aβ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the Aβ42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred tγ-secretase modulatoro as γ-secretase modulators that inhibited the production of the Aβ42 peptide and to a lesser degree the Aβ40 peptide while concomitantly increasing the production of the carboxyl-truncated Aβ38 and Aβ37 peptides. These modulators potently lower Aβ42 levels without inhibiting the γ-secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ-secretase modulator (GSM), (S)-N-(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower Aβ42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce Aβ neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble Aβ42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials
Hybrid simulation of a structure to tsunami loading
A new hybrid simulation technique has been developed to assess the behavior of a structure under hydrodynamic loading. It integrates the computational fluid dynamics and structural hybrid simulation and couples the fluid loading and structure response at each simulation step. The conventional displacement-based and recently developed force-based hybrid simulation approaches are adopted in the structural analysis. The concept, procedure, and required components of the proposed hybrid simulation are introduced in this paper. The proposed hybrid simulation has been numerically and physically tested in case of a coastal building impacted by a tsunami wave. It is demonstrated that the force error in the displacement-based approach is significantly larger than that in the force-based approach. The force-based approach allows for a more realistic and reliable structural assessment under tsunami loading
Prenatal Lead Levels, Plasma Amyloid β Levels, and Gene Expression in Young Adulthood
Background: Animal studies suggest that early-life lead exposure influences gene expression and production of proteins associated with Alzheimer’s disease (AD)
Antiangiogenic Activity and in Silico Cereblon Binding Analysis of Novel Thalidomide Analogs
Funding: This research was supported in part by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute (ZIA SC006538); in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E; the Intramural Research Program of the National Institute on Aging, National Institutes of Health; and a Wellcome Trust-NIH PhD Studentship to SB, WDF, and NV (Grant number 098252/Z/12/Z). Acknowledgments: The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.Peer reviewedPublisher PD
Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content
Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content
Fibromodulin Reduces Scar Formation in Adult Cutaneous Wounds by Eliciting a Fetal-Like Phenotype
Blocking transforming growth factor (TGF)β1 signal transduction has been a central strategy for scar reduction; however, this approach appears to be minimally effective. Here, we show that fibromodulin (FMOD), a 59-kD small leucine-rich proteoglycan critical for normal collagen fibrillogenesis, significantly reduces scar formation while simultaneously increasing scar strength in both adult rodent models and porcine wounds, which simulate human cutaneous scar repair. Mechanistically, FMOD uncouples pro-migration/contraction cellular signals from pro-fibrotic signaling by selectively enhancing SMAD3-mediated signal transduction, while reducing AP-1-mediated TGFβ1 auto-induction and fibrotic extracellular matrix accumulation. Consequently, FMOD accelerates TGFβ1-responsive adult fibroblast migration, myofibroblast conversion, and function. Furthermore, our findings strongly indicate that, by delicately orchestrating TGFβ1 activities rather than indiscriminately blocking TGFβ1, FMOD elicits fetal-like cellular and molecular phenotypes in adult dermal fibroblasts in vitro and adult cutaneous wounds in vivo, which is a unique response of living system undescribed previously. Taken together, this study illuminates the signal modulating activities of FMOD beyond its structural support functions, and highlights the potential for FMOD-based therapies to be used in cutaneous wound repair. © The Author(s) 2017
- …