126,545 research outputs found

    Barium release system

    Get PDF
    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time

    Rocket having barium release system to create ion clouds in the upper atmosphere

    Get PDF
    A chemical system for releasing a good yield of free barium atoms and barium ions to create ion clouds in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium is presented

    Curved centerline air intake for a gas turbine engine

    Get PDF
    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased

    Proton-induced noise in digicons

    Get PDF
    The Space Telescope, which carries four Digicons, will pass several times per day through a low-altitude portion of the radiation belt called the South Atlantic Anomaly. This is expected to create interference in what is otherwise anticipated to be a noise-free device. Two essential components of the Digicon, the semiconductor diode array and the UV transmitting window, generate noise when subjected to medium-energy proton radiation, a primary component of the belt. These trapped protons, having energies ranging from 2 to 400 Mev and fluences at the Digicon up to 4,000 P+/sec-sq cm, pass through both the window and the diode array, depositing energy in each. In order to evaluate the effect of these protons, engineering test models of Digicon tubes to be flown on the High Resolution Spectrograph were irradiated with low-flux monoenergetic proton beams at the University of Maryland cyclotron. Electron-hole pairs produced by the protons passing through the diodes or the surrounding bulk caused a background count rate. This is the result of holes diffusing over a distance of many diode spacings, causing counts to be triggered simultaneously in the output circuits of several adjacent diodes. Pulse-height spectra of these proton-induced counts indicate that most of the bulk-related counts overlap the single photoelectron peak. A geometrical model will be presented of the charge collection characteristics of the diode array that accounts for most of the observed effects

    Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Get PDF
    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO

    The ALEXIS data processing package: An IDL based system

    Get PDF
    The Array of Low Energy X-ray Imaging Sensors (ALEXIS) experiment consists of a mini-satellite containing six wide angle EUV/ultrasoft x-ray telescopes. Its purpose is to map out the sky in three narrow (approximately 5 percent) bandpasses around 66, 71, and 93 eV. The 66 and 71 eV bandpasses are centered on intense Fe emission lines which are characteristic of million degree plasmas such as the one thought to produce the soft x-ray background. The 93 eV bandpass is not near any strong emission lines and is more sensitive to continuum sources. The mission will be launched on the Pegasus Air Launched Vehicle in the second half of 1992 into a 400-nautical-mile, high inclination orbit and will be controlled entirely from a small ground station located at Los Alamos. The project is a collaborative effort between Los Alamos National Laboratory, Sandia National Laboratory, and the University of California-Berkeley Space Sciences Laboratory. The six telescopes are arranged in three pairs. As the satellite spins twice a minute they scan the entire anti-solar hemisphere. Each f/1 telescope consists of a spherical, multilayer-coated mirror with a curved, microchannel plate detector located at the prime focus. The multilayer coatings determine the bandpasses of the telescopes. The field of view of each telescope is 30 degrees with a spatial resolution of 0.5 degree, limited by spherical aberration. The data processing requirements for ALEXIS are large. Each event is one of the six telescopes is telemetered to the ground with its time of arrival and position on the detector. This information must be folded with the aspect solution for the satellite to reconstruct the direction on the sky from which the photon came. Because of the way the six telescopes scan the sky, the effective exposure calculation is also very computationally intensive. ALEXIS may generate up to 100 megabytes of raw data per day, which are converted into a gigabyte per day of processed data. While the processing job for ALEXIS is sizable, the programming staff is small. To maximize programming efficiency, and to make the best use of tools available in the public domain, we chose IDL as our software development platform. IDL was used from the start of instrument development through flight. We use IDL as a top-level executive for the processing tasks (replacing Unix shell scripts), as a device independent graphics engine, as a database manager, and as a final data manipulator. IDL routines spawn special purpose C programs to perform detailed telemetry deconvolution and other specialized functions. We discuss the use of IDL and C within the processing and archiving strategy for the ALEXIS data anlaysis system as implemented on a SPARCstation platform. We also show results from our End-to-End software simulation capability as processed by our analysis codes

    A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    Get PDF
    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results

    Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry

    Get PDF
    The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry

    Record-setting Cosmic-ray Intensities in 2009 and 2010

    Get PDF
    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ~70 to ~450 MeV nucleon^(–1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ~20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications
    corecore