36,917 research outputs found

    The color of sea level: importance of spatial variations in spectral shape for assessing the significance of trends

    Get PDF
    We investigate spatial variations in the shape of the spectrum of sea level variability, based on a homogeneously-sampled 12-year gridded altimeter dataset. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist, and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a 5th order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times what would be calculated assuming “white” noise, and the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global-mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes, over this perio

    Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA)

    Get PDF
    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included

    Increased surface flashover voltage in microfabricated devices

    Get PDF
    With the demand for improved performance in microfabricated devices, the necessity to apply greater electric fields and voltages becomes evident. When operating in vacuum, the voltage is typically limited by surface flashover forming along the surface of a dielectric. By modifying the fabrication process we have discovered it is possible to more than double the flashover voltage. Our finding has significant impact on the realization of next-generation micro- and nano-fabricated devices and for the fabrication of on-chip ion trap arrays for the realization of scalable ion quantum technology

    Daylight quantum key distribution over 1.6 km

    Get PDF
    Quantum key distribution (QKD) has been demonstrated over a point-to-point 1.6\sim1.6-km atmospheric optical path in full daylight. This record transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for publication consideratio

    Resonantly enhanced and diminished strong-field gravitational-wave fluxes

    Full text link
    The inspiral of a stellar mass (1100M1 - 100\,M_\odot) compact body into a massive (105107M10^5 - 10^7\,M_\odot) black hole has been a focus of much effort, both for the promise of such systems as astrophysical sources of gravitational waves, and because they are a clean limit of the general relativistic two-body problem. Our understanding of this problem has advanced significantly in recent years, with much progress in modeling the "self force" arising from the small body's interaction with its own spacetime deformation. Recent work has shown that this self interaction is especially interesting when the frequencies associated with the orbit's θ\theta and rr motions are in an integer ratio: Ωθ/Ωr=βθ/βr\Omega_\theta/\Omega_r = \beta_\theta/\beta_r, with βθ\beta_\theta and βr\beta_r both integers. In this paper, we show that key aspects of the self interaction for such "resonant" orbits can be understood with a relatively simple Teukolsky-equation-based calculation of gravitational-wave fluxes. We show that fluxes from resonant orbits depend on the relative phase of radial and angular motions. The purpose of this paper is to illustrate in simple terms how this phase dependence arises using tools that are good for strong-field orbits, and to present a first study of how strongly the fluxes vary as a function of this phase and other orbital parameters. Future work will use the full dissipative self force to examine resonant and near resonant strong-field effects in greater depth, which will be needed to characterize how a binary evolves through orbital resonances.Comment: 25 pages, 6 figures, 4 tables. Accepted to Phys Rev D; accepted version posted here, including referee feedback and other useful comment

    Midlatitude Pi2 pulsations: AFGL and ISEE magnetometer observations correlated

    Get PDF
    The ISEE observations of the pi2 magnetic pulsations occuring substorm onset in the inner magnetosphere are discussed. One of these events which was also detected as a pi2 event by the AFGL midlatitude magnetometers is considered. The event occurred when the foot of the ISEE field line was over North America. The ground and satellite signals are remarkably similar: they start and stop at the same time, have the same period and can be correlated cycle by cycle. The waves are detected in the electric field data from ISEE 1 and in the magnetic field data from both ISEE 1 and ISEE 2. Calculation of the Poynting vector at ISEE 1 shows that the energy flowed mainly westward, but that there was also a component towards the nearer (southern) ionospheric foot of the field line. The phases between the various field components measured by ISEE 1 and 2 indicate that this is a standing hydromagnetic oscillation

    Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics

    Get PDF
    Social groups are at particular risk for parasite infection, which is heightened in eusocial insects by the low genetic diversity of individuals within a colony. To combat this, adult ants have evolved a suite of defenses to protect each other, including the production of antimicrobial secretions. However, it is the brood in a colony that are most vulnerable to parasites because their individual defenses are limited, and the nest material in which ants live is also likely to be prone to colonization by potential parasites. Here, we investigate in two ant species whether adult workers use their antimicrobial secretions not only to protect each other but also to sanitize the vulnerable brood and nest material. We find that, in both leaf-cutting ants and weaver ants, the survival of the brood was reduced and the sporulation of parasitic fungi from them increased, when the workers nursing them lacked functional antimicrobial-producing glands. This was the case for both larvae that were experimentally treated with a fungal parasite (Metarhizium) and control larvae which developed infections of an opportunistic fungal parasite (Aspergillus). Similarly, fungi were more likely to grow on the nest material of both ant species if the glands of attending workers were blocked. The results show that the defense of brood and sanitization of nest material are important functions of the antimicrobial secretions of adult ants and that ubiquitous, opportunistic fungi may be a more important driver of the evolution of these defenses than rarer, specialist parasites

    Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress

    Get PDF
    We use QuikSCAT scatterometer data, together with geostrophic surface currents calculated from a combination of satellite altimetry, gravity and drifter data, to investigate the rate of work done on the geostrophic circulation by wind stress. In particular, we test the suggestion that accounting for ocean currents in the calculation of stress from 10 m winds can result in a reduction of 20–35% in the wind work, compared with an approximate calculation in which currents are not accounted for. We calculate the predicted effect of accounting for ocean currents to be a reduction in power of about 0.19 TW, and find a total power input from observations which include this effect to be 0.76 TW, smaller than earlier estimates by about the right amount. By recalculating the power input using smoothed wind stresses or currents, we demonstrate that the effect of ocean currents is visible in the midlatitude data, and close to the predicted value. Proof that the data are adequate to resolve the effect in the tropics, however, is lacking, suggesting that additional processes may also be important in this region
    corecore